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In this Letter we discuss a natural general relativistic mechanism that causes inhomogeneities and hence
generates matter perturbations in the early Universe. We concentrate on spikes, both incomplete spikes
and recurring spikes, that naturally occur in the initial oscillatory regime of general cosmological models.
In particular, we explicitly show that spikes occurring in a class of G, models lead to inhomogeneities
that, due to gravitational instability, leave small residual imprints on matter in the form of matter
perturbations. The residual matter overdensities from recurring spikes are not local but form on surfaces.
We discuss the potential physical consequences of the residual matter imprints and their possible effect on

the subsequent formation of large-scale structure.
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Introduction.—It is a general feature of solutions of
partial differential equations (PDE) that spikes [narrow
inhomogeneous structures (see, e.g., Fig. 2)] occur [1].
Therefore, spikes are expected to occur in generic solutions
of the Einstein field equations (EFE) of general relativity
(GR), which are a complicated set of PDE [2]. Indeed,
when a solution of the EFE is stable at certain points but
otherwise unstable, spikes will arise near the stable points.
The set of such points can be a surface, a curve or a point in
the three-dimensional space.

Belinskii, Khalatnikov, and Lifshitz (BKL) [3] have
conjectured that within GR, the approach to the generic
(past) spacelike singularity is vacuum dominated, local,
and oscillatory (i.e., Mixmaster). Studies of G, (G, space-
times are those which admit two commuting spacelike
Killing vector fields, and hence only have one degree of
inhomogeneity) and more general cosmological models
have produced numerical evidence that the BKL conjec-
ture generally holds except possibly at isolated points
(surfaces in the three-dimensional space) where spiky
structures (*‘spikes’’) form [4]. These spikes become ever
narrower as the singularity is approached. The presence of
such spikes violates the local part of the BKL conjecture.

The study of spikes is severely limited due to the enor-
mous numerical resources needed to resolve the narrowing
spikes in simulations. In [5], further improved numerical
evidence was presented that spikes in the Mixmaster
regime of G, cosmologies are transient and recurring,
supporting the conjecture that the generalized Mixmaster
behavior is asymptotically nonlocal where spikes occur. It
is believed that this recurring violation of BKL locality
holds in more general spacetimes; however, it remains to
study this more comprehensively.

In this Letter, we wish to study the residual imprints of
the spikes on matter inhomogeneities. As the spike
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inhomogeneities form, matter undergoes gravitational in-
stability and begins to collapse to form overdensities. In
this way, density inhomogeneities naturally form in the
early Universe in generic GR models. This is a natural GR
effect, and the question arises as to whether these density
inhomogeneities are physical and can be observed and,
indeed, whether such matter inhomogeneities could act
as seeds for the subsequent formation of large-scale struc-
ture. (We use terminology such as density perturbations to
describe the residual local inhomogenieties imprinted in
the matter, but the actual mathematical behavior is rather
more complicated and perhaps can be better described as a
delay in evolution at the spike.)

Therefore, we are interested in possible (purely classical
GR) effects that could cause inhomogeneities and hence
generate matter perturbations that might then impinge on
structure formation. We are particularly interested in re-
curring and distributed spikes formed in the oscillatory
regime (or recurring spikes for short), and their imprint
on matter. We show that matter inhomogeneities can occur
in simple so-called orthogonally transitive (OT) G, models
[4] with a tilted radiation fluid. [A tilted fluid is a fluid that
has a nonzero velocity (or tilt) relative to the chosen
reference frame.] Some intuition can be gained by looking
at the case of small (normalized) density parameter () with
small tilt. First, we study a test fluid in an exact vacuum
background [6] (small tilt and small {2 with no backreac-
tion on the geometry); although a complete spike transition
leaves no imprint in this case, a partial spike transition does
leave an imprint. We then study the small tilt approxima-
tion with small {) (when matter is not a test field), and
show heuristically that residual matter inhomogeneities
occur. The argument does not apply to the typical case of
non-negligible ) and/or tilt; however, we argue it does
occur in more general models (partly by studying the decay
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rates of the inhomogeneous spikes). We also discuss some
simple exact spike solutions (previously studied in the
literature), which have residual matter inhomogeneities,
further lending support to the heuristic analysis [2]. But
ultimately we shall demonstrate the existence of matter
perturbations by numerical simulations.

Both the incomplete spikes and the recurring spikes are
potentially of physical importance (but perhaps for differ-
ent reasons). In the final section we discuss the potential
physical applications of the results, and speculate on
whether these recurring spikes might be an alternative to
the inflationary mechanism for generating matter
perturbations.

Spike analysis.—The full evolution (EFE) equations are
given in Appendix D of [2] (with A = 0). The variables
there are |B|-normalized (or Hubble-normalized). The
B-normalized lapse is chosen to have the value —1/2
here (which is appropriate for numerical simulation). The
evolution equations are [ is the area expansion rate of the
(3, z) plane; 7y is the equation of state parameter, with
y = 1 describing the radiation fluid. 3, 3_, and 3 are
components of the S-normalized rate of shear; Ny and N_
are components of the B-normalized spatial curvature. ) is
the B-normalized fluid density; v is the relative fluid
velocity (tilt) in the x direction. B-normalization is analo-
gous to the standard Hubble-normalization, and is related
through H = B(1 — %,).]

a,In|Bl =31+ 3% +33 + N% + N2 + (y — )],
(1)

3, InQ = IyvE'9, InQ + LyE '9,v — 22 — v)
X[1+322 +3% + N2+ N2 —Q] )

where 2, and ¢ (and all terms) are given in [2]. There are
also evolution equations for E£,! and v (and 3_, 3, N_,
Ny). In this Letter we need only focus on () and v. We
consider the linearization of each variable around a back-
ground metric:
O=0,+€Q, +0(), v=v,+ev,+0(E), (3)
etc. In the small ) and small v approximation we assume
that ) and v have vanishing zeroth order terms. The
linearized evolution equations are easily obtained from
the full EFE.

The expressions for the exact vacuum spike solution [6],
which are used as the zeroth order (background) solution in
the linearization, are

(27’ N><’ EX’ N,)

1
= (—c2_qup — Ne SN _Taubs CN_Taubs =52 _aup),  (4)

where c=(P-1D/(f>+1), s=2f/(f*+ 1),
f = weTsech(wr)x, 3 _tp = [wtanh(wr) — 1]/+/3, and
N _tau, = wsech(wr)/+/3. We note that

B= —%sech(wr)e#’fi"z(f2 +1)71/2, (5)

We shall provide analytical evidence for the existence of
residual matter inhomogeneities due to spikes. We first
consider a test perfect fluid.

Spike imprint: Test fluid and incomplete spikes.—For a
test fluid (with negligible () and v), from the EFE and the
conservation equation we obtain

9. 1n|B| = j(q +1), 6)
9, InQ = —(g+1)+3y(1 - X,).

Remarkably, (p and) ) can be solved exactly as follows:

p = poB/Bo®)], Q= Qyx)[B/Bo(x)]" 7.
(N

Note that d,1In|B| is positive. So for vy satisfying
0 <y <2, we see that 8 and p blow up at the singularity,
but Q = p/(38?) tends to zero [“matter does not mat-
ter”]. As spacetime expands, p and B decrease and ()
increases.

For the spike solution B, given by (5) with
f = wesech(w7)x, depends on x and so it is responsible
for the spatial inhomogeneity. It can be seen from Fig. 1
that this factor is asymptotically homogeneous (and
equals 1) as 7 tends to oo, for |w| > 1. It takes the value
1 at x = O for all time, but is smaller for x # 0. This means
that B is inhomogeneous during a spike transition, but a
complete spike transition restores [ to homogeneous.
Similarly, a complete spike transition has zero cumulative
effect on the inhomogeneity in p and ) (when regarded as
a test fluid).

-5 -10 X

FIG. 1 (color online). The factor (f2 + 1)~1/2 with w = 3. x
and 7 are the dimensionless space and time variables, respec-
tively. 7 tends to +oo at the singularity. The spatial axis used
here (and in Figs. 2 and 3) is X = e"x.
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FIG. 2 (color online). |B| at 7 =0 with w = 3, A, = 0.

Discussion.—During a spike transition, 8 develops a
hump (and ) develops a dip) at the spike surfaces x = 0.
This can be interpreted as a delay or lag in the evolution at
the spike point compared with points far away. The delay is
temporary, and by the end of the spike transition there is no
delay.

As the Universe expands from the big bang, presumably
it starts with a Mixmaster oscillatory regime with spike
transitions occurring on surfaces here and there, and with
Bianchi type II transitions occuring elsewhere. Eventually,
the oscillatory regime ends when () is no longer negligible.
Some of the spike transitions are in the middle of transi-
tioning when the oscillatory regime ends. This leaves an
inhomogeneous imprint on matter as well as curvature, by
way of a delay in evolution at surfaces of spike points. | 5]
and p are larger, and () is smaller at surfaces of spike
points than at other points.

Since () is no longer negligible at the formation of an
incomplete spike, Eq. (7) may not be a good approxima-
tion. But the conclusion that | 8| and p are larger, and () is
smaller at surfaces of spike points, is confirmed by numeri-
cal simulations. We note that the isolated incomplete
spikes are rare, since the solutions spend much less time
undergoing transitions than evolving in the Kasner epoch.

Heuristic analysis: Small {).—. We next study the line-
arized equations with a spike background, assuming a
small ). The zeroth order terms in the linearized equations
are satisfied identically by the exact spike solution.
Assuming ), = 0, then the leading order term in the
linearized EFE gives (), in terms of B, [Eq. (5)]:

Q) = Q,@[Bo/Bo0)] 7. )

Without loss of generality, we can evaluate ),(x)
and  fy(x) at =0, obtain O, =

C(w2x* + 1)7%|,@0|_(2_7), where C is a constant. This
means that the initial spatial profile of (), is not freely
specifiable (for nondust), but is determined by the spike
background. We can subsequently solve the linearized
equations for the remaining variables.

Heuristic analysis: nontrivial {).— Let us now consider
the large () case with )y # 0. From these equations (for
v, small) we obtain

and we

9, InQ = o, In|B|7277 + 2y(2 — y)Q.

Writing Q = Q(1 + €Q,), where Q) = QO(X)IB(;(Z—«/) is
the zeroth order solution as given by Egs. (7) and (5), we
obtain

0,1+ eQ) =3y2 =y Q1 + Q)2

and hence

00| fower]

where Oy = QO(JC)F(T)B(T, X), and B(7,x) =
(1+ f2)'=v/2 [and F(r) is defined by Eq. (5) and
f = wesech(wr)x, plus possible additional contributions
from B,;]. The important point is that there are conse-
quently contributions to ) from terms like [ B(7, x)dr.
Now, the spike occurs for — 7y < 7 < 7, but as 7 — oo the
spike disappears and B(7, x) becomes homogeneous
(although transient inhomogeneities occur for —7y < 7 <
70, see Fig. 1) However, terms like [ B(7, x)d7 retain a
residual inhomogeneity. Hence terms like [ B(7, x)d7 (and
integrals thereof) contribute an inhomogeneous imprint to
), and hence the matter density.

Therefore, there will be a residual inhomogeneous im-
print on the density due to a spike. This has been illustrated
here in this simple case, but it is most likely to be true in all
generality. We still need to analyze the case of large () and
large v. However, this can only be done numerically.

Decay rate—From above (), = Qo(x)F (7)B(7, x).
The residual inhomogeneity comes from B(7, x) = [1 +
(weTsech(wr)x)?]'~ 72 (y<2). Of course, as
T— 0, B(1,x) — 1, and the inhomogeneity from the
spike decays. For large 7, we have that B(7,x) ~ 1 +
4w?(1 — e "7x2 where w > 1. Hence the inhomoge-
neity (the imprint of the spike) decays at the rate ¢ =7,
Now, from linear perturbation theory, density inhomoge-
neities are expected to grow at the rate ¢ ~ ¢“7, for some
constant ¢, due to gravitational instability (where c
depends on +y). Thus, it might be expected that residual
inhomogeneous imprints on the density would occur when-
everc +2(1 —w)>0(G.e., for 1 <w<1+c/2).

Exact solutions with matter.—Finally, we briefly discuss
some simple exact spike solutions that have been studied
previously, which constitute examples of residuals in
special cases. Spikes arise when a solution straddles the
stable manifold (or separatrix) of an unstable equilibrium
point (a source or a saddle point), see Chapter 6 in [2] . If
the unstable manifold of that equilibrium point is one-
dimensional, then spikes occur on a surface (in three-
dimensional space), if two-dimensional, then on a curve,
if three-dimensional, then on a point.

In [2], an explicit solution in the class of locally rota-
tionally symmetric (LRS) G, cosmological models with
dust and a cosmological constant was given, illustrating
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explicitly how the straddling of the stable manifold of a
saddle point leads to the formation of a spike. Solutions on
each side of the stable manifold approach different sinks,
leading to a discontinuous limit in some of the variables.
The shape of this discontinuous limit may look like a step
function or a spike. Similarly, it is possible to find a spiky
solution in Lemaitre-Tolman-Bondi (LTB) models [2].

Numerical evidence of residuals.—Let us do a simple
numerical simulation to show that there is indeed an in-
homogeneous imprint left by a spike. The numerical code
is essentially the one used in [5], with a radiation fluid
added. The limitation of the code is that it cannot handle
shock waves and the steplike structure that forms in the tilt.
The tilt is unstable for 3, < 0, so this limits the simula-
tions to spikes with roughly |w| < 2. The current code with
zooming also means that each simulation can only see the
spacetime at horizon scale. To see the imprint, which
becomes superhorizon into the past, several simulations
are needed to produce the figure. It is inefficient, and we
hope to find an efficient way to simulate the spacetime at
superhorizon scale in the future.

Figure 3 shows the time evolution of 7 separate simula-
tions centered on 7 worldlines

x=0,10"7,107%,1075,107%,107%,and 1072  (9)

(labeled worldline number 6 to 0 in the plot). The ratio of
Q is taken to be Q/Q|,_,,->. Hence the plot along world-
line number 0 equals 1. From the plot, towards the singu-
larity we see that () near the spike (at x = 0) grows sixfold.
Reversing the time direction, we see that the spike thus
leaves an imprint on ) with a sixfold underdensity. The
above plot is produced with =107 and w = L5.
Using w =14 vyields a 5.8-fold change. Using
Q = 1077 does not affect the result. From these prelimi-
nary results, we conclude that the spike leaves an under-
dense imprint on () regardless of the size of (). The
amplitude of the underdensity depends on w.

Q ratio

FIG. 3 (color online).
See text for details.

Ratio of () along different worldlines.

Let us make two comments about the imprint obtained.
First, the wavelength is at the width of the spike (roughly
the horizon scale) when it is created. But towards the future
it will become subhorizon, as the horizon expands.
Because of this, it is difficult to see the imprint numerically
when using a single simulation with zooming. Second, the
imprint is large (sixfold) because () is close to zero.
Towards the future this ratio will become smaller as
Q) becomes of order 1 in the radiation dominated
close-to-flat-FLRW era.

We conclude that the numerics show the occurrence of
residuals (i.e., definite spatial dependence is illustrated).
We are not too concerned at this time about the shape or
characteristics of the residuals. However, we can ask
whether the numerics suggest void formation (see
Fig. 3). Q develops a void at a spike location; they are
voids when they form. But it is hard to say what these
imprints will lead to, since they may change to overden-
sities via subsequent later dynamics.

Discussion.—We are interested in the possible existence
of a GR mechanism for generating matter perturbations.
We have concentrated on spikes, both incomplete spikes
and recurring spikes, and shown that there are effects,
entirely within classical GR, that could cause inhomoge-
neities and hence matter perturbations.

In particular, we have shown that there will be residual
matter perturbations from spikes, based on a heuristic
qualitative analysis of a single spike in the OT G, model
and exact LRS G, and LTB spike solutions with matter [2],
and most importantly from numerical simulations. There
are residuals from an incomplete spike, that might in
principle be large and thus affect structure formation
(and any such effects might lead to observational
constraints).

In addition, we have explicitly shown that there exist G,
recurring spikes that lead to inhomogeneities and a residual
in the form of matter perturbations, that these occur natu-
rally within generic cosmology models within GR, and that
they are not local but form on surfaces and give rise to a
distribution of perturbations. In the G, models the inho-
mogeneities can occur on a surface, and in general space-
times the inhomogeneities can occur along a line, leading
to matter inhomogeneities forming on walls or surfaces.
Indeed, there are tantalizing hints (from dynamical and
numerical analyses) that filamentary structures and voids
would occur naturally in this scenario. We also note that
any shock waves that form (generated by inhomogeneities
in the fluid pressure and density), perhaps (but not neces-
sarily) associated with spikes, might lead to additional
residual perturbations [2].

Inflationary cosmology provides a causal mechanism
which generates the primordial perturbations which were
later responsible for the formation of stars, galaxies,
clusters, and all large-scale structures of our Universe
under the influence of gravitational collapse. The density
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perturbations produced during inflation are due to quantum
fluctuations in the matter and gravitational fields [7]. The
evolution outside the Hubble radius then produces a large
amplification of the perturbations. Primeval fluctuations
are then thought to be present at the end of the inflationary
epoch. Provided that inflation lasts sufficiently long, ge-
nerically an (almost) scale-invariant Harrison-Zel’dovich
spectrum of density fluctuations are generated, which then
evolve to the (tiny, 107) adiabatic, Gaussian, and scale-
invariant density fluctuations in the power spectrum of the
CMB [7].

If inflation does occur after the mixmaster regime is
over, all of the classical inhomogeneities will be redshifted
away, but any “intermediate” scale effects might not nec-
essarily be redshifted away, and might still be of impor-
tance in cosmology. In the standard scenario it is assumed
that there is no scale between the quantum scale and the
classical scale that would be amplified during inflation and
become important in cosmology after inflation. We could
ask whether there is such an intermediate scale inherent
in GR.

Perhaps the scale associated with distributed recurring
spikes might be such an intermediate scale. Indeed, since
the ‘““horizon” goes to zero as we approach the initial
mixmaster “‘singularity’ in the classical regime, the scale
(wavelength) of the “first” recurring spikes can be arbi-
trarily small (but larger than the Planck scale assuming the
mixmaster oscillations occur in the classical regime after
leaving the Planck regime). If there are classical scale
inhomogeneities produced (either by late time, isolated
spikes or shocks, or amplified recurring spikes) they must
be consistent with current observations.

Indeed, in the case of recurring spikes within GR, the
perturbations can be extremely small (and, as noted earlier,
occur in nonisolated distributions everywhere). Therefore,
we speculate whether recurring spikes could generate pri-
mordial matter perturbations that are very small (107°) at
recombination and subsequently seed the large-scale struc-
ture of the actual Universe, and consequently act as an
alternative to the usual inflationary mechanism. In spite of

the remarkable success of the inflationary universe para-
digm, there are several serious conceptual problems for
current models [8]. Thus, a classical GR mechanism for
generating small inhomogeneities would be an interesting
alternative that might bring GR back to the heart of
cosmology [9].

In future work we shall study what happens in more
generality, hopefully obtaining some information regard-
ing the properties of residual matter inhomogeneities (e.g.,
their characteristic scales) and the statistical properties of
matter perturbations (i.e., the distribution of perturbations
in general inhomogeneous models). Unfortunately,
although this is very interesting, this is also extremely
difficult to investigate since it involves the numerical in-
tegration of general GR cosmological models.
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