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We obtain the first exact solution for the stationary one-dimensional Kardar-Parisi-Zhang equation. A

formula for the distribution of the height is given in terms of a Fredholm determinant, which is valid for

any finite time t. The expression is explicit and compact enough so that it can be evaluated numerically.

Furthermore, by extending the same scheme, we find an exact formula for the stationary two-point

correlation function.
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The dynamics of a growing surface has long been a
subject of intense study because of its wide appearance
in nature and relevance to material science; it is also of
great theoretical interest as an important example of non-
linear nonequilibrium phenomena [1,2]. For a surface
growing only through local interaction, a prototypical
equation was proposed by Kardar, Parisi, and Zhang
(KPZ) in 1986 [3]. In this Letter, we focus on its one-
dimensional version,
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Here hðx; tÞ represents the height of the surface at
position x 2 R and time t � 0. The last term �ðx; tÞ is
taken to be the Gaussian white noise with covariance
h�ðx; tÞ�ðx0; t0Þi ¼ D�ðx� x0Þ�ðt� t0Þ.

This KPZ equation has been well known and has already
been studied extensively [4–8], but interest in this equation
has revived [9]. First, the efforts to have a better under-
standing of the equation, which are from various perspec-
tives and have lasted for more than two decades, finally
culminated in the achievement of an exact solution for its
height distribution [10,11]; second, it has turned out that
such fine information as the height distribution can be
measured experimentally. In [12], Takeuchi and Sano
employed a turbulent liquid crystal as a material and found
a clear agreement with theoretical predictions.

In the studies of growing surface, the fluctuations of the
height are of primary importance. In many examples one
observes the ‘‘kinetic roughening.’’ As time goes on, the
surface becomes rougher and rougher, even if it starts from
a completely flat substrate. This concerns the transient
behaviors which are certainly interesting, but even more
natural and important is the stationary situation. Most
systems eventually reach their own steady states after
relaxation times, and our understanding of the nonequilib-
rium steady state (NESS) is in general so limited that
concrete results for a simple system should give us valu-
able information. Many papers on the KPZ equation have

addressed its stationary properties with various methods,
but all attempts to treat this case exactly have so far failed.
In this article, we provide the first exact results for the

KPZ equation in the stationary situation. For the KPZ
equation, the stationary state is given by the two-sided
Brownian motion (BM) with respect to x [13]: hðx; 0Þ ¼
�B�ð�xÞ for x < 0, �BþðxÞ for x > 0, where � ¼
ð2�Þ�3=2�D1=2 and B�ðxÞ are two independent standard
BMs, as seen in Fig. 1. Since the system is translationally
invariant, one can set without loss of generality the initial
height at the origin to be zero, i.e., hð0; 0Þ ¼ 0. In the
following, we will show the explicit formulas for the height
distribution Prob½hðx; tÞ � s� and the two-point space-time
correlation functions of the slope h@xhðx; tÞ@xhð0; 0Þi
(Fig. 1). The obtained expressions are explicit enough so
that they can be evaluated numerically. We would say that
the main achievements in our paper are that we could draw
their figures as given in Figs. 2 and 3 below.
Let us briefly recall the theoretical developments so far.

Early works using renormalization group ideas and other
analytic methods have identified the critical exponents. It
was established that when t is large, the fluctuations of the

height grow like Oðt1=3Þ and the nontrivial equal-time

correlations in space are observed on the Oðt2=3Þ scale.
About a decade ago, it was realized that a few growth
models admit a mapping to a combinatorial problem,

x

h

t2/3

xh(x,t) xh(0,0)

o

h(x,t)

h(x,0)

t1/3

FIG. 1. The two-sided BM initial condition and the two-point
function.
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which allowed us to study their height distributions and
their universal scaling limits. In these models some of
the space, time, and height are discrete; there is a natural
ultraviolet cutoff, which makes their analysis somewhat
easier. The most surprising at the time was that the univer-
sal height distribution is the same as that of the largest
eigenvalue of Gaussian ensembles from random matrix
theory [14,15].

But it was only very recently that these developments
finally led to the identification of the exact height distribu-
tions for the KPZ equation itself [10,11]. It contains valu-
able information about finite time behaviors, which has
significant relevance to real physical systems because a
slow approach to the limiting values for the moments has
been observed in experiments as well. For more recent
developments, see, for instance, [16–18].

A most important finding from the exact solution is that
the KPZ equation represents the universal crossover be-
tween the linear (� ¼ 0) Edwards-Wilkinson (EW) [19]
and the nonlinear KPZ universality classes. This is real-
ized, for instance, in the fact that the KPZ equation is
obtained as a weakly asymmetric limit of the asymmetric
simple exclusion process (ASEP). In other words, the KPZ
equation describes the behaviors of the ASEP in a certain
time regime [5]. The ASEP is a stochastic system of many
particles, each of which performs an asymmetric random
walk under the constraint of volume exclusion with other
particles, and is one of the most well-studied nonequilib-
rium discrete models. The KPZ equation also captures
appropriately low temperature behaviors of some random
directed polymer models in [20,21], demonstrating the uni-
versality of the equation.

The first exact solution of the KPZ equation was ob-
tained for the narrow wedge initial condition, for which the
shape of the surface at finite time is a parabola [10,11]. On
the other side from the previous studies, it has been well
established that the height distribution depends strongly on
the geometry of the system and its initial conditions
[15,22]. In particular it is crucial whether the macroscopic
shape of the surface is curved or flat. This was confirmed in
an experiment as well [9]. Hence, it is obviously important
to extend the exact results to other cases, which is not at all
trivial. The analysis in [10,11] was based on a previous
exact result of the ASEP [23]. The ASEP has been exten-
sively studied, but the studies of its fluctuation properties
are fairly involved, and there are not so many general-
izations obtained so far.

In the meantime, the same expression for the narrow
wedge initial condition was rederived by using a replica
method [20,24]. The replica method is well known to be
powerful for studying systems with randomness but is also
known to possess a serious difficulty related to the analytic
continuation for the replica number. Interestingly enough,
for the KPZ equation, though there appear divergent sums
during the computations, one finally arrives at the correct

finite expression. Hence, a replica analysis of the KPZ
problem should be useful for clearer understanding of
replica method in general. Moreover, this approach has
turned out to be more suited for various generalizations.
In fact multipoint distributions were studied in [25] and,
more recently, the flat initial condition was treated in [26].
In the present Letter, we study the stationary case by a
nontrivial extension of this replica approach. By a set of
scalings of space, time, and height, x ! �2x, t !
2��4t, h ! �

2� h, we can and will do set � ¼ 1
2 , �� ¼

D ¼ 1.
Now, we start to explain our solutions. The main object

in this Letter is the height distribution function defined by

Fv�;tðsÞ ¼ Prob½hð0; tÞ � t=24 � �ts�; (2)

where �t ¼ ðt=2Þ1=3. Note that this reflects previous stud-
ies: The average is given by hhðx; tÞi ¼ t=24, and the

fluctuation scales like Oðt1=3Þ from the KPZ scaling. It
has not been clear how one can take the average over the
BM initial condition directly, or if it is possible at all. The
novel strategy here in studying the stationary state is that
we first consider a generalized initial condition and then
retrieve the desired information from the results for it. The
initial condition we consider is

hðx; 0Þ ¼
�
B�ð�xÞ � v�x; x < 0
BþðxÞ þ vþx; x > 0;

(3)

where v� are the strength of the drifts. Once this generalized
case is solved, then the stationary case can be accessed by
taking the v� ! 0 limit.

Applying the Cole-Hopf transformation, Zðx; tÞ ¼
e�hðx;tÞ, the KPZ equation (1) is linearlized as
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This can be interpreted as a problem of a directed polymer
in random media; Z is its partition function. We consider
the Nth replica partition function hZNðx; tÞi and compute
their generating function GtðsÞ defined as

GtðsÞ ¼
X1
N¼0

ð�e��tsÞN
N!

hZNð0; tÞieN�3
t =12: (5)

Using the Feynman path integral representation of Z and
taking the average with respect to the random potential �,
the replica partition function can be written in a form,
hZNðx; tÞi ¼ hxje�HNtj�i. Here hxj represents the state
with all N particles being at the position x and j�i, the
initial state. For the KPZ equation, the Hamiltonian HN

turns out to be that of the delta-function Bose gas with
attractive interaction [27],

HN ¼ � 1
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The eigenvalues and eigenfunctions can be constructed by
using the Bethe ansatz [20,24,28,29]. For a set of quasi-
momenta zj’s, the eigenvalue Ez is given by Ez ¼ 1

2 �P
N
j¼1 z

2
j and the eigenfunction by hx1; . . . ; xNj�zi ¼

Cz

P
P2SN

sgnP
Q

1�j<k�N½zPðjÞ � zPðkÞ þ isgnðxj � xkÞ��
expðiPN

l¼1 zPðlÞxlÞ, where SN is the set of permutations

with N elements and Cz is the normalization constant.
For the �-Bose gas with attractive interaction, the quasi-
momenta zjð1 � j � NÞ are in general complex numbers

and are aligned in the form of ‘‘strings’’ [24]. The com-
pleteness of these Bethe states was proved very recently
[30]. We will compute this moment by expanding as
hZNðx; tÞi ¼ P

ze
�Ezthxj�zih�zj�i.

Because the Brownian motion is a Gaussian process, one
can perform the average over the initial distribution (3) and
the inner product of h�zj�i can also be explicitly calcu-
lated under the condition v� > 0. It includes the summa-
tion over SN coming from the Bethe eigenstate, which
looks highly nontrivial but we have found that there is a
combinatorial formula which factorizes it [31]. We obtain

h�zj�i¼N!Cz

Q
N
m¼1ðvþþv��mÞQ1�j<k�Nðz�j�z�kÞQN

m¼1ð�iz�mþv��1=2Þð�iz�m�vþþ1=2Þ:
(7)

Now we can follow the arguments in [32]. We further
modify the expression of the replica partition function
and write it in terms of a determinant by using the
Cauchy’s determinant formula. After some computation,
one arrives at an expression for the generating function.

For the narrow wedge [10,11] and the half BM initial
condition [32], this generating function itself is written as a
Fredholm determinant, but this time it is not because of the
novel factor

Q
N
l¼1ðvþ þ v� � lÞ. The difficulty can be

avoided by considering a further generalized initial condi-
tion for the KPZ equation in which the initial overall height
� obeys a certain probability distribution. A similar argu-
ment was already used for other discrete models
[22,33,34]. If we denote the height with this initial distri-

bution by ~h, we have ~h ¼ h� �, where h is the original
height for which hð0; 0Þ ¼ 0. The random variable � is
taken to be independent of h and hence the Nth moment of

e�~h factorizes as he�N ~hi ¼ he�NhiheN�i. Moreover, the

probability distribution functions ~FðsÞ ¼ Prob½~hð0; tÞ �
�ts� and FðsÞ ¼ Prob½hð0; tÞ � �ts� are related as FðsÞ ¼

1
�ð��1

t
d
dsÞ

~FðsÞ, where � is the Laplace transform of the proba-

bility density function of �, and we assume 1=�ð	Þ can be
Taylor expanded around 	 ¼ 0. Here it should be noticed

that if e� obeys the inverse gamma distribution with pa-
rameter vþ þ v�, i.e., if e�� obeys the gamma distribution
with the same parameter, its Nth moment is given by
1=

QN
l¼1ðvþ þ v� � lÞ, which exactly compensates for

the extra factor above. Hence the generating function
~GtðsÞ corresponding to ~h can be written as a Fredholm
determinant.
Following the arguments in [20,25,32], one can recover

the information of the distribution for ~h from the generat-

ing function ~Gt. Combining this and a fact �ð	Þ ¼ �ðvþ
	Þ=�ðvÞ for the case where e� is the inverse gamma
random variable with parameter v, we find that the height
distribution for the initial condition (3) is given by

Fv�;tðsÞ ¼
�ðvþ þ v�Þ

�ðvþ þ v� þ ��1
t d=dsÞ

�
�
1�

Z 1

�1
due�e�tðs�uÞ

�v�;tðuÞ
�
: (8)

Here �v�;tðuÞ is expressed as a difference of two Fredholm
determinants,

�v�;tðuÞ ¼ det½1� PuðB�
t � P�

AiÞPu� � detð1� PuB
�
t PuÞ;

(9)

where Ps represents the projection onto (s;1),

P�
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�
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and

Ai ��ða;b;c;dÞ¼
1

2


Z
�
id
b

dzeizaþiðz3=3Þ �ðibzþdÞ
�ð�ibzþcÞ ; (12)

where �zp represents the contour from �1 to 1 which,

along the way, passes below the pole at z ¼ id=b.
With this expression, it is not hard to do analytic con-

tinuation for v� to their negative regions and then take the
v� ! 0 limit to study the stationary situation. Our result
for the height distribution for the stationary KPZ equation
is written as

Prob½hð0; tÞ � t=24 � �ts� ¼ 1

�ð1þ ��1
t d=dsÞ

Z 1

�1
du�te

�tðs�uÞþe��tðs�uÞ
�0;tðuÞ: (13)
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Here �0;tðuÞ is obtained from �v�;tðuÞ by taking v� ! 0
limit as in [34]. Details will be given elsewhere [31]. By
using this formula, one can numerically evaluate the dis-
tribution. In Fig. 2, we plot this distribution (13) for �t ¼
1. Once we have the formula for finite t, it is not difficult to
consider the scaling limit. In our setting, it can be studied
simply by taking t ! 1. One can confirm that it tends to
F0 as given in [34]. This function already appeared in the
studies of lattice growth models and describes the station-
ary height distribution in the scaling limit [34–36].

It is not hard to generalize our analysis to the height near
the origin. From the KPZ scaling, the nontrivial correlation

is expected onOðt2=3Þ scale, and we can see that the height
distribution at x ¼ 2�2

t X with X finite is written as the
same form as in (13) with its kernel slightly modified to
include X. This can be readily used to obtain the exact
formula for the stationary two-point correlations. Let us set
Cðx; tÞ ¼ h½hðx; tÞ � hhðx; tÞi�2i. One can check that the
second derivative of this function with respect to x is, in
fact, twice the two-point correlation: @2xCðx; tÞ ¼
2h@xhðx; tÞ@xhð0; 0Þi. From the KPZ scaling, we also in-

troduce the scaled version, gtðyÞ ¼ ð2tÞ�2=3Cðð2tÞ2=3y; tÞ.
Plotted in Fig. 3 is the second derivative of this function
gtðyÞ. In the scaling limit, it tends to the function gðsÞ,
which was studied before in [34–37]. More discussions
will be given in [31].

Here we remark that in statistical mechanics, computing
the dynamical correlation functions is one of the most
important objectives of the theory. For instance, in the
Kubo formula, one needs the dynamical current-current
correlation function in equilibrium. This is already known
to be very difficult in general and it is even more interesting
and challenging to compute the dynamical correlation for
nonequilibrium systems, in particular in its stationary state.
In addition, the Fourier transform of the two-point function
is known as the structure function, which can be measured
directly using (e.g., neutron) scattering experiments.
Our exact results represent the universal crossover for

the KPZ equation with t being a parameter. As explained
above, in a certain time regime, the fluctuation properties
of the weakly ASEP (WASEP) are described by the KPZ
equation. We confirmed this by comparing our theoretical
predictions with Monte Carlo simulations of the WASEP
(Figs. 2 and 3). The dots in Figs. 2 and 3 represent the
Monte Carlo results for the current distribution and
density-density correlation in the WASEP respectively.
To summarize, we have found the first explicit formulas

for the height distribution and the two-point correlation
functions for the KPZ equation in its stationary regime.
They are explicit enough to allow numerical evaluations as
depicted in Figs. 2 and 3. One observes nontrivial devia-
tions from the scaling limit. They contain valuable infor-
mation about the finite t corrections, which should be
observed in real experiments. One possibility to realize
the stationary situation in an experiment is to use again the
liquid crystal turbulence because the system is fairy flex-
ible for setting a desired initial condition by adjusting a
shape of the laser pulse. It might also be possible to observe
our prediction by performing a careful experiment of paper
combustion for which the stationary situation was already
studied in a previous publication [38].
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