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We show that work distributions and nonequilibrium work fluctuation theorems can be measured in

optical spectra for a wide class of quantum systems. We consider systems where the absorption or

emission of a photon corresponds to the sudden switch on or off of a local perturbation. For the particular

case of a weak local perturbation, the Crooks relation establishes a universal relation in absorption as well

as in emission spectra. Because of a direct relation between the spectra and work distribution functions

this is equivalent to universal relations in work distributions for weak local quenches. As two concrete

examples we treat the x-ray edge problem and the Kondo exciton.
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Equilibrium thermodynamics provides the framework
for the description of the equilibrium properties of macro-
scopically large systems. This includes the properties of
systems in equilibrium states as well as the description of
transitions between different equilibrium states even if the
system is not in equilibrium in the meantime. Starting in
1997 with a seminal contribution from Jarzynski [1], the
field of nonequilibrium work fluctuation theorems [2]
opened up. These relate a measurable nonequilibrium
quantity, the work performed, to equilibrium free energies
even if the system is driven arbitrarily far away from
equilibrium.

Suppose a system is prepared in a thermal state at
inverse temperature �. If the Hamiltonian HðtÞ of the
system changes during a time interval from 0 to tf accord-

ing to a prescribed protocol, work is performed on the
system. In order to determine the work done two energy
measurements are necessary leading to the notion that
work is not an observable [3]; the work W rather is a
random variable with a probability distribution function [3]

PFðWÞ ¼
Z ds

2�
eiWsGðsÞ; GðsÞ ¼ heiHð0Þse�iHHðtfÞsi: (1)

Here h� � �i denotes the thermal average over the initial state
and HHðtfÞ ¼ UyðtfÞHðtfÞUðtfÞ with UðtfÞ the time-

evolution operator obeying the differential equation
i@tUðtÞ ¼ HðtÞUðtÞ. In this Letter we set @ ¼ 1.

Let PBðWÞ be the probability distribution function for
the backward protocol. Then the Crooks relation, first
shown for classical systems [4] and later extended to closed
as well as open quantum systems [5–7]:

PFðWÞ
PBð�WÞ ¼ e�ðW��FÞ; (2)

establishes a universal connection between the forward and
backward processes that only depends on the equilibrium
free energy difference �F of the final and initial state
independent of the details of the protocol. The Jarzynski
relation [1] is a consequence of Eq. (2), see, e.g., Ref. [4].
Experimental tests of the Crooks relation have been

performed in recent years for classical systems. Among
these are folding-unfolding experiments of small RNA-
hairpins where the free energy difference between the
folded and unfolded state has been extracted using the
Crooks relation [8,9]. Moreover, it has been verified in
electrical circuits [10], for mechanical oscillators [11],
small colloidal particles [12], and nonthermal systems [13].
In the quantum case a measurement of work distribu-

tions has not been performed up to now. Recently, a
measurement scheme in optical traps has been proposed
[14] that has not been realized yet. In the present Letter we
show that work distributions of quantum systems have
been measured for decades in terms of x-ray spectra of
simple metals. We point out that there exists a large class of
quantum systems associated with the x-ray edge problem
where absorption spectra Að!Þ and emission spectra Eð!Þ
can be identified with forward and backward work distri-
butions for a sudden switch on or off of a local perturba-
tion. This allows for an experimental observation of
nonequilibrium work fluctuation theorems such as the
Crooks relation. For the particular case of a weak local
perturbation, the Crooks relation manifests in the universal
relations

PRL 108, 190601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
11 MAY 2012

0031-9007=12=108(19)=190601(5) 190601-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.190601


Að!þ�FÞ
Að�!þ�FÞ ¼ e�!;

Eð!þ�FÞ
Eð�!þ�FÞ ¼ e��! (3)

that hold in second order renormalized perturbation theory.
This is the central result of this Letter that will be proven
below. Here �F is the free energy difference between the
system with and without local perturbation at the same
inverse temperature �. Notice that an independent mea-
surement of �F is not required to establish Eq. (3) in an
experiment. Actually, Eq. (3) permits a determination of
�F similar to experiments in biophysics [8,9]. Because of
the correspondence between spectra and work distribu-
tions, Eq. (3) implies universal relations for work distribu-
tions of weak local quenches:

PFðWþ�FÞ
PFð�Wþ�FÞ¼e�W;

PBðW��FÞ
PBð�W��FÞ¼e�W: (4)

Here, PFðWÞ is the work distribution for a protocol where
the local perturbation is suddenly switched on and PBðWÞ
the work distribution for the backward protocol.

Consider a system weakly coupled to a monochromatic
light field of frequency! where the absorption or emission
of a photon corresponds to the sudden switch on or off of a
local perturbation. Such systems have been discussed ex-
tensively in the literature. In the x-ray spectra of simple
metals a system of free fermions has to adapt to a suddenly
created or annihilated local potential scatterer [15–18]. For
metals with incomplete shells the local perturbation is
related to localized orbitals [18,19]. As has been shown
recently, spectra of quantum dots allow for an idealized
implementation of x-ray edge type problems [20,21]. In the
remainder, H denotes the Hamiltonian with the local per-
turbation and H0 without, respectively.

Crooks relation in absorption and emission spectra.—
First, we concentrate on the absorption case, the related
emission spectra will be discussed below. The absorption
spectrum for incident light of frequency ! in second order
of the system-light field coupling (Fermi’s golden rule) is
related to a dynamical correlation function via Fourier
transformation

Að!Þ ¼ �A

Z dt

2�
ei!tGAðtÞ: (5)

The constant �A contains parameters depending on the
experimental details such as the intensity of the incident
light beam or the system-light field coupling. Note that the
photon energy ! in Eq. (5) is not the bare one, it is usually
measured relative to a constant offset !0, e.g., the core-
hole binding energy in the x-ray edge problem. We
consider those systems where the dynamical correlation
function GAðtÞ appearing in Eq. (5) is of the structure

GAðtÞ ¼ 1

ZA

Trðe��H0eiH0te�iHtÞ; ZA ¼ Trðe��H0Þ
(6)

as in the case of x-ray edge type problems [15–21]. For a
particular problem at hand, the question of whether GAðtÞ
can be brought into the form in Eq. (6) has to be studied on
a case by case basis. Regarding Eq. (6) GAðtÞ is the
characteristic function of a work distribution for a quench
from H0 to H, cf. Eq. (1). This identification allows for an
observation of the Crooks relation in an optics experiment.
Recently, x-ray edge singularities have been found in work
distributions for local quenches in an Ising chain at criti-
cality [22].
The emission spectrum Eð!Þ corresponding to the same

setup is given by

Eð!Þ ¼ �E

Z dt

2�
e�i!tGEðtÞ (7)

with

GEðtÞ ¼ 1

ZE

Trðe��HeiHte�iH0tÞ; ZE ¼ Trðe��HÞ:
(8)

Hence, Eð�!Þ is proportional to the work distribution for a
protocol where the local perturbation is switched off, that is
precisely the backward process to absorption. A direct
application of the Crooks relation in Eq. (2) therefore
yields

Að!Þ
Eð!Þ ¼ �A

�E

e�ð!��FÞ (9)

as an exact result. This relation depends on experimental
details through the parameters �A and �E. The linear
scaling of lnðAð!Þ=Eð!ÞÞ as a function of the frequency
! of the light beam, however, is universal with a slope �.
Note that Eq. (9) is valid for an arbitrary strength of the
local perturbation, we only assume a small coupling to the
external light field.
Two different measurements, absorption and emission,

are necessary to explore this relation in experiment.
However, the Crooks relation can also be measured in a
single experiment in case of weak local perturbations
where Eq. (3) holds as will be shown below. This has the
additional advantage as opposed to the exact relation in
Eq. (9) that also the experiment specific constants �A and
�E drop out.
Equations (1), (6), and (8), show the formal equivalence

between work distribution functions and optical x-ray edge
spectra. In conventional experiments the work distribution
function is sampled by recording in each realization the
work performed. The full distribution function is succes-
sively built up jointly over all work values. Optical spectra,
however, are recorded differently. The outcome of a mea-
surement is not the work performed. Instead one obtains
directly the probability for photon absorption (or emission)
at a given frequency ! (work performed). The full distri-
bution function is then constructed by sweeping the laser
through all relevant frequencies.
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The advantage of measuring work distributions via
optical spectra is that the absorbed photon carries out the
sequence of measuring the energy in the initial state,
applying the perturbation, and measuring the energy of
the final state, in a single step. It can be absorbed or emitted
only in case when its frequency ! matches precisely the
energy difference between the system’s initial and final
state. The disadvantage is that only specific local perturba-
tions and only specific protocols (sudden switchings) can
be implemented.

Crooks relation in a single spectrum.—Suppose V is the
unitary transformation that diagonalizes the Hamiltonian
H. In the following we normal order Hamiltonians relative
to the finite temperature initial mixed state [23]. For ge-
neric weak coupling impurity problems the diagonalized
Hamiltonian can be represented as [24]

VHVy ¼ H0 þ�F (10)

in the thermodynamic limit [25] where�F denotes the free
energy difference between the systems described byH and
H0 at the same temperature T. The appearance of tempera-
ture in this equation can be understood from the normal
ordering procedure [24]. As a consequence of Eq. (10), the
dynamical correlation functions GA=EðtÞ can be written as

GAðtÞ ¼ 1

ZA

Trðe��H0VyðtÞVÞe�i�Ft;

GEðtÞ ¼ 1

ZA

Trðe��H0VðtÞVyÞei�Fte���F;

(11)

where VðtÞ ¼ eiH0tVe�iH0t and �F ¼ ���1 logðZE=ZAÞ.
For all the relevant cases, it is possible to represent the
unitary transformation V as an ordered exponential V ¼
Oexp½�� where � is anti-Hermitian, �y ¼ ��, and O
denotes some ordering prescription. For generic weak
coupling problems such as the Kondo model at nonzero
temperature analyzed later, the flow equation approach
provides a general prescription for the construction of the
unitary transformation V as an ordered exponential of its
generator �ðBÞ [26]

V ¼ T B exp

�Z 1

0
dB�ðBÞ

�
; (12)

where �ðBÞ is determined by a set of differential equations.
For B> B0, T B orders an �ðBÞ left of an �ðB0Þ.
Expectation values of ordered exponentials such as in
Eq. (11) can be related to the exponential of a cumulant
average [27] that can be expanded in a power series in
powers of �. The first cumulant vanishes as � can be
chosen normal ordered relative to the initial state. For the
x-ray edge problem the cumulant expansion stops at sec-
ond order within the validity of the bosonization technique,
see below. For more complicated problems such as the
Kondo exciton the diagonalizing unitary transformation
can be obtained by the flow equation framework, see
Eq. (12). In this case, the generator �ðBÞ and thus the

operator � is proportional to the strength of the local
perturbation such that in the case of a weak local perturba-
tion the expansion is controlled by a small parameter. For
systems with significant renormalization effects, couplings
have to stay small over the whole renormalization flow.
Performing this cumulant expansion up to second order

one observes that GAðtÞ and GEðtÞ are directly related to
each other via GAðtÞei�Ft ¼ GEðtÞe�i�Fte���F. For the
spectra this result implies �AEð!þ�FÞe���F ¼
�EAð�!þ�FÞ. Plugging this relation into the Crooks
relation, see Eq. (9), one directly proves the main result,
Eq. (3), in second order renormalized perturbation theory.
In the remainder of this Letter, we will discuss two

examples for the Crooks relation in absorption spectra:
the x-ray edge problem and the Kondo exciton.
The x-ray edge problem.—In the x-ray edge problem the

absorption of a photon is accompanied by the sudden
creation of a local potential scatterer in a sea of noninter-

acting fermions [16]. Hence, we have H0 ¼
P

k"k : c
y
k ck :

and H ¼ HðgÞ ¼ H0 þ ð2�=LÞgPkk0 : c
y
k ck0 : where the

colons denote normal ordering, see [24]. We consider a
linearized dispersion "k ¼ vFk and set vF ¼ 1. The
Fourier transform of the absorption spectrum is given
by [16]

SðtÞ ¼ 1

ZA

Trðe��H0eiH0tc ð0Þe�iHðgÞtc yð0ÞÞ (13)

that is yet not in the desired form as in Eq. (6). Using the
bosonization technique, the fermionic fields c ðxÞ can be

represented in terms of bosonic ones, �ðxÞ, via c ðxÞ ¼
a�1=2Fe�i�ðxÞ with a�1 an ultraviolet cutoff [28]. The
Klein factor F commutes with HðgÞ and does not contrib-
ute to SðtÞ due to its property FFy ¼ 1. The bosonization
identity allows us to regard the fermionic fields as a unitary
transformation acting on HðgÞ such that SðtÞ / GAðtÞe�i�t

with a constant energy shift � that can be absorbed into a
redefinition of the constant offset !o and GAðtÞ is in the
desired form:

GAðtÞ ¼ 1

ZA

Trðe��H0eiH0te�iHð1þgÞtÞ: (14)

The diagonalizing transformation V of Hð1þ gÞ equals

V ¼ eið1þgÞ�ð0Þ [17]. Although the effective strength of the
scatterer 1þ g is not small, the cumulant expansion stops
at second order as the operator in the exponent is linear in
bosonic operators. Hence, in the range of validity of the
bosonization treatment, the Crooks relation in Eq. (3) holds
exactly for the x-ray edge absorption spectrum. Comparing
bosonization [17] with the exact treatment [16], it yields
the correct result up to second order in g. This restriction
originates from the linearization of the free fermionic
spectrum [17].
The Kondo exciton.—Recently, Türeci et al. [21] pro-

posed an experimental setup for a quantum dot where
the absorption of a photon corresponds to the sudden
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switch on of a Kondo impurity. Hence, we have H0 ¼P
k�"k : c

y
k�ck� : and H ¼ H0 þ

P
kk0Jkk0 : ~S � ~skk0 : . For

details about the Kondo problem, see, for example,
Ref. [29]. The dynamical correlation function GAðtÞ for
the absorption spectrum is given by Eq. (6). The diagonal-
izing unitary transformation V can be obtained by the flow

equation approach [26], cf. Eq. (12), with �ðBÞ ¼P
kk0 ð"k � "k0 ÞJkk0 ðBÞ : ~S � ~skk0 : in 1-loop order. The cou-

plings Jkk0 ðBÞ are determined by a set of differential equa-
tions [30]. Importantly, the flow equation framework
includes all the renormalization effects such as the emer-
gence of a low-energy scale TK, the Kondo temperature.
The absorption spectrum is obtained via the cumulant
expansion up to second order in the coupling strength. Its
validity is restricted to weak coupling problems such that
we have to require T � TK [31]. A plot of the absorption
spectrum is shown in Fig. 1 for different temperatures. As a
reference, a NRG curve for T ¼ 100TK obtained by Türeci
et al. [21] for an Anderson impurity model in the Kondo
regime is included in this figure [32]. In the vicinity of the
main peak at small j!j< T, the NRG calculation contains
an unphysical double peak structure. For more details we
refer to Ref. [21]. For frequencies j!j * T, however,
where the NRG data are accurate we observe excellent
agreement with the results of the flow equation formalism.
Asymptotic formulas for Að!Þ in the limit! ! �1 can be
found in Ref. [21]. The inset shows the validity of Eq. (3).
The ratio Að!þ �FÞ=Að�!þ �FÞ is the universal func-
tion e�! independent of any details.

Conclusions.—We have shown that work distributions
and thus nonequilibrium work fluctuation theorems can be
measured in optical spectra of quantum systems such as the
x-ray edge problem or the Kondo exciton. For weak local
perturbations, the Crooks relation establishes a universal
relation within a single spectrum, absorption or emission,
cf. Eq. (3).
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