
Quantum Simulation of Interacting Fermion Lattice Models in Trapped Ions

J. Casanova,1 A. Mezzacapo,1 L. Lamata,1 and E. Solano1,2

1Departamento de Quı́mica Fı́sica, Universidad del Paı́s Vasco UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
2IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain

(Received 28 November 2011; published 10 May 2012)

We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped

ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant

couplings. We map products of fermionic operators onto nonlocal spin operators and decompose the

resulting dynamics in efficient steps with Trotter methods, yielding an overall protocol that employs only

polynomial resources. The proposed scheme can be relevant in a variety of fields such as condensed-

matter or high-energy physics, where quantum simulations may solve problems intractable for classical

computers.
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Quantum simulations promise to revolutionize comput-
ing technologies and scientific research by allowing us to
solve problems that are otherwise intractable with classical
computers [1,2]. Several physical systems have been pro-
posed in a quantum simulator: spin models [3–6], quantum
phase transitions [7], quantum chemistry [8], anyonic sta-
tistics [9], many-body systems with Rydberg atoms [10],
and relativistic systems [11–18]. Trapped ions offer one of
the most promising platforms for quantum simulators [19],
due to their high controllability, efficient initialization, and
measurement [20]. In the near future, experiments in quan-
tum simulations should be able to solve problems intrac-
table for classical computers, turning this technology into a
remarkable tool for scientists and engineers.

The numerical simulation of fermionic systems is, in
general, a hard problem due to the huge increase of the
Hilbert space dimension with the number of modes [1,21].
Using customized numerical methods such as quantum
Monte Carlo calculations is not always possible due to
the well-known sign problem [22,23]. Quantum simula-
tions appear as a tool that will allow us to compute the time
evolution of free and interacting fermion lattice theories
with minimal experimental resources. This will be helpful
in performing a wide range of condensed-matter calcula-
tions, including those related to many-body interactions
such as the Kondo [24], Fermi-Hubbard [25], or Fröhlich
[26] Hamiltonians. Furthermore, quantum simulations will
allow us to reproduce the complete dynamics of these
systems, avoiding mean field approximations such as the
Hartree-Fock approximation to simplify nonlinear interac-
tions [27].

In this Letter, we propose a method of realizing the
quantum simulation of many-body fermionic lattice mod-
els for N fermionic modes in trapped ions. Our method can
be described in three steps. Firstly, we map the set of N
fermionic modes, via the Jordan-Wigner transformation
[28], to a set of N nonlocal spin operators. The second
step consists in decomposing the total unitary evolution via

Trotter expansion [2,29,30] in terms of a product of ex-
ponentials associated with each nonlocal spin operator
appearing in the Hamiltonian. Finally, we implement
each of these exponentials in polynomial time on a set of
N two-level trapped ions with a reduced number of laser
pulses [31,32]. These three steps yield an efficient protocol
that employs only polynomial resources. Our method can
simulate highly nonlinear and long-range interactions in
arbitrary spatial dimensions, applying the Jordan-Wigner
transformation without the usual restriction of a reduced
number of neighbors, and without the need of auxiliary
virtual Majorana fermions [33]. This is due to the fact that
the dynamics associated with the nonlocal spin operators,
containing a large number of Pauli matrices, can still be
efficiently implemented. The proposed protocol opens the
possibility to simulate a wide range of interesting
condensed-matter and high-energy physics fermionic sys-
tems for a large number of particles. This includes the
calculation of time evolutions and ground state computa-
tions, e.g., through adiabatic protocols [34]. For a number
of particles above �30, which is foreseeable in the near
future, one could already simulate fermionic systems that
are intractable for classical computers.
We consider the quantum simulation of the dynamics

associated with the general Hamiltonian

H ¼ X�

n¼2

� XN

i1...in¼1

gi1...inci1 � � � cin þ H:c:

�
; (1)

where cik has to be chosen as one of the fermionic

operators bik , byik , that obey the anticommutation rule

fbik ; byik0 g ¼ �ik;ik0 , N is the number of fermionic modes,

and � is the highest order of the many-body interaction.
Our protocol consists of three steps, gathering tech-

niques that have not been previously considered for quan-
tum simulators of fermionic lattice models [35].
(i) Jordan-Wigner mapping.—This technique establishes

a correspondence between a set of fermionic operators and
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a set of spin operators, transforming a local Hamiltonian of
fermions onto a nonlocal Hamiltonian of spins. Only in one
spatial dimension, and for couplings extended to a reduced
number of neighbors, the correspondence is from a local

model to a similar one [28]. The operators bik , b
y
ik

can

always be mapped to products of Pauli matrices, i.e., non-
local spin operators, using the Jordan-Wigner transforma-

tion byk ¼ IN � IN�1 � . . . � �þ
k � �z

k�1 � . . . � �z
1, and

bk ¼ ðbyk Þy.
(ii) Trotter decomposition of the total Hamiltonian.—

Our second step consists in using standard Trotter tech-
niques to decompose the total evolution operator in terms
of a product of evolution operators associated to each
nonlocal spin operator. We prove below that these evolu-
tion operators can be implemented efficiently.

(iii) Implementation of nonlocal spin operators in
trapped ions.—The exponentials of each nonlocal spin
operator are efficiently implementable, given that their
exponents consist of tensor products of k Pauli matrices.
Each of these exponentials can be implemented, for arbi-
trary k and up to local rotations, with a Mølmer-Sørensen
gate upon k ions, one local gate upon one of the ions, and
the inverse Mølmer-Sørensen gate [31]. This step can be
summarized as

U ¼ UMSð��=2; 0ÞU�z
ð�ÞUMSð�=2; 0Þ

¼ exp½i��z
1 � �x

2 � �x
3 � � � � � �x

k�; (2)

where UMSð�;�Þ ¼ exp½�i�ðcos�Sx þ sin�SyÞ2=4�,
Sx;y ¼

P
k
i¼1 �

x;y
i , and U�z

ð�Þ ¼ expði�0�z
1Þ for odd k,

where �0 ¼ � for k ¼ 4nþ 1, and �0 ¼ �� for
k ¼ 4n� 1, with positive integer n. For even k, U�z

ð�Þ
would be substituted by U�y

ð�Þ ¼ expði�0�y
1Þ, where

�0 ¼ � for k ¼ 4n, and �0 ¼ �� for k ¼ 4n� 2, with
positive integer n. In order to obtain directly a coupling
composed of �y matrices times a �z, one may apply a
similar approach with different Mølmer-Sørensen gates
according to

U ¼ UMSð��=2; �=2ÞU�ð�ÞUMSð�=2; �=2Þ
¼ exp½i��z

1 � �y
2 � �y

3 � � � � � �y
k�; (3)

where the localU�ð�Þ gate is expði�0�z
1Þ for odd k, where

�0 ¼ � for k ¼ 4nþ 1, and �0 ¼ �� for k ¼ 4n� 1,
with positive integer n. For even k, the local gate is
expði�0�x

1Þ where �0 ¼ � for k ¼ 4n� 2, and �0 ¼
�� for k ¼ 4n, with positive integer n. Note that local
rotations acting on each ion give rise to any tensor product
of Pauli matrices �x;y;z

k . The coupling constant in each

nonlocal spin term of the simulated Hamiltonian (1) will
be related to � through � ¼ �gt, where g is a generic
coupling strength and t is the corresponding gate time (for
details, see [35]).

The three steps of our protocol amount to an efficient
method for simulating fermionic models with long-range
couplings in arbitrary dimensions with trapped ions.
Note that for bounded Hamiltonians, the Trotter expan-

sion associated with the exponential of the polynomial sum
of efficiently implementable nonlocal terms is also effi-
cient [2,29,30]; i.e., it only requires polynomial resources
[35]. This includes most fermionic models in condensed-
matter and high-energy physics, some of which we con-
sider below.
Kondo model.—The long debated Kondo Hamiltonian

provides a variety of interesting features in different sys-
tems, as the minimum in the resistivity at low temperatures
[36]. With the proposed method, we can simulate Kondo
Hamiltonians [24], modelling the interaction of a Fermi
sea of electrons with several magnetic impurities at
positions Rj,

H ¼ X

p�

�pb
y
p�bp� � J

X

pp0j
eiRj�ðp�p0Þ½ðbyp"bp0" � byp#bp0#Þ�z

j

þ byp"bp0#��
j þ byp#bp0"�þ

j �: (4)

Here, � ¼" , # is the spin of the electron, bp;p0"ðbyp;p0"Þ is
the annihilation (creation) operator for an electron with
respective momentum p or p0 and spin up, �þ

j ð��
j Þ is the

impurity raising (lowering) spin operator, �p is the energy

of the kinetic electronic Hamiltonian, and J is the electron-
impurity coupling. Notice that, e.g., the operators

byp"bp0#��
j can now be mapped to a sum of products of

Pauli matrices, leading to an efficient implementation.
Fermi-Hubbard model.—The Fermi-Hubbard

Hamiltonian [25] takes into account a range of effects in
condensed-matter physics, as the Mott transition, and is
also believed to be relevant in high-Tc superconductivity. It
takes the form

H ¼ w
X

�i�

byi�biþ�� þU
X

j

byj"bj"b
y
j#bj#; (5)

where the first fermionic operator subindex refers to the
lattice site and the second to the spin, w is the hopping
energy, U is the on site Coulomb repulsion and one usually
makes the tight-binding approximation � ¼ �1. Notice
that our method is general and extends the hopping terms
to arbitrarily distant pairs of electrons. The last term con-
tains the product of four fermionic operators, allowing for
efficient implementation.
We could as well implement the coupling of arbitrary

products of fermionic operators [similar to Eq. (1)] to the
linear sum of bosonic operators,

H¼X�

n¼2

� XN

i1...in¼1

gi1���inci1 ���cin
X

j

gjðajþayj ÞþH:c:

�
: (6)

The bosonic operators aj can be implemented with the

vibrational modes of the ion chain. One would now
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consider the same gate sequence as in Eq. (2) but

replacing U�z
ð�Þ ¼ expði�0�zÞ with U�z;að�Þ ¼

exp½i�0�z
P

jgjðaj þ ayj Þ�. The latter can be imple-

mented by using red and blue sideband interactions for
each of the aj modes in the context of standard trapped-

ion technology [37].
Fröhlich model.—The Fröhlich Hamiltonian [26] mod-

els the interaction of electrons with phonons,

H ¼ X

p

p2

2m
bypbp þ!0

X

q

ayqaq

þX

qp

MðqÞbypþqbpðaq þ ay�qÞ; (7)

withMðqÞ being the electron-phonon coupling. Here, bp is

the electron annihilation operator that destroys an electron
with momentum p, aq is the phonon annihilation operator

with momentum q, !0 is the phonon frequency, and m is
the electron mass. The last term contains the product

bypþqbpðaq þ ay�qÞ, whose dynamics can be implemented

with our technique above according to Eq. (6). We can
simulate this kind of Hamiltonian in order to recover the
polaron physics, a critical open issue for the deep under-
standing of correlated electrons in solids [38].

One of the main appeals of our method is that the
efficient encoding of fermionic models in a lattice with
arbitrarily long-range couplings is feasible. This also
means that we can apply the Jordan-Wigner transformation
for two and three spatial dimensions, not just for one,
without employing additional virtual Majorana fermions
[33]. All this is due to the fact that the fermionic operators
are encoded in nonlocal spin operators whose dynamics are
efficiently implementable. Thus, the mapped spin
Hamiltonians are highly nonlocal but their evolution is
efficiently realizable. In order to show this, we plot in
Fig. 1 the mapping of a solid-state 3D fermionic system
onto an ion string. As opposite to the nearest-neighbor
tunneling coupling between fermions 1 and 2, which is
local, the couplings between 1 and 4, and between 1 and
10, are nonlocal due to the Jordan-Wigner transformation
[see Fig. 1(a)]. Nevertheless, we can implement them in an
efficient way. In Fig. 1(b), we show the implementation of

the tunneling coupling by1b10þby10b1¼�x
1��z

2��z
3�

. . .��z
9��x

10þ�y
1��z

2��z
3� . . .��z

9��y
10 in trapped

ions. This highly nonlocal coupling is a global unitary of
210 � 210 dimensions. In the general case, it would require
a number of elementary gates of 220 ’ 106 [2]. With our
method, the number of gates can be as small as 10 per
Trotter step, consisting of Mølmer-Sørensen gates (dark
blue and green, second, fourth, seventh and ninth gates
starting from the left), local expði�0�y

2Þ gates (red, third
and eighth gates starting from the left), exp½�ið�=4ÞPi�

y
i �

(yellow, sixth and tenth gates starting from the left), and
exp½�ið�=4ÞPi�

x
i � (cyan, first and fifth gates starting from

the left) gates [see Fig. 1(b)] [35].

Numerical simulations.—In order to compare the effi-
ciency of the Trotter decomposition with the exact case, we
have realized numerical simulations of the Fermi-Hubbard
Hamiltonian, Eq. (5), for different levels of Trotter expan-
sion and for the exact diagonalization case. We have con-
sidered the case of three lattice sites, with six modes (two
spins per site), to be simulated with six two-level trapped
ions. The resulting Hamiltonian is

H ¼ wðby1"b2" þ by1#b2# þ by2"b3" þ by2#b3# þ H:c:Þ
þUðby1"b1"by1#b1# þ by2"b2"b

y
2#b2# þ by3"b3"b

y
3#b3#Þ: (8)

Notice that the number of terms to be implemented scales
linearlywith the number ofmodes, 5N=2� 4 (11 in this case,
forN ¼ 6). At the same time, the nonlocal gates upon several
ions are efficiently implementable with few lasers, such that
the number of gates in each term of the Hamiltonian is, in the
worst case, linear in the number of modes, and in many cases
just constant. In this particular example the total number of
gates per Trotter step is 33, i.e., on average 3 gates per
Hamiltonian term, which is very efficient. This is due to the
specific structure of this Hamiltonian, that avoids the need to
apply additional local rotations.
In Fig. 2, we plot in (a) and (c) the average number of

excitations for mode b2# (dashed, blue line) and b3" (solid,
red line) for different parameters, showing the good con-
vergence of the Trotter method. In (a) and (c), the lines are
obtained with exact diagonalization and the dots with
Trotter expansion. For additional figures with a larger
number of Trotter steps, see [35]. In (b) and (c) we include
the fidelity jhc ðtFÞjc ðtFÞTij2 as a function of the number
of Trotter steps nT , where jc ðtÞi is the state evolved with
exact diagonalization, and jc ðtÞTi is the Trotter-evolved

FIG. 1 (color online). (a) Mapping of a fermionic Hamiltonian
onto an ion string. The couplings between fermions 1 and 4
(respectively, 1 and 10) are nonlocal when applying the Jordan-
Wigner transformation. (b) Efficient mapping of the tunneling
coupling by1b10 þ by10b1 in trapped ions. This highly nonlocal

coupling can be implemented with Mølmer-Sørensen gates
(dark blue and green, second, fourth, seventh and ninth gates starting
from the left), local expði�0�y

2Þ gates (red, third and eighth gates

starting from the left), exp½�ið�=4ÞPi�
y
i � (yellow, sixth and tenth

gates starting from the left), and exp½�ið�=4ÞPi�
x
i � (cyan, first and

fifth gates starting from the left) gates.
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state, for jc ð0Þi ¼ jc Tð0Þi ¼ by1"b
y
1#j0i, and for different

parameters. Notice that the fidelity of the Trotter expansion
goes to 1 with the number of Trotter steps nT , and for
nT ¼ 10 it is 0.99 (b) or 0.97 (d).

With current technology, more than 100 gates have been
realized in a single experiment [39]. Indeed, without error
correction, onewould expect the realizationofmore than1000
gates in the near future [40]. This will allow, for nT ¼ 10
Trotter steps, the implementation of hundreds of gates per
step, giving us the possibility to simulate a wide variety of
fermionic models. In a possible experiment, one could con-
sider, e.g., strings ofCaþ ions controlledwith lasers. The spin
degrees of freedom can be encoded in long-lived electronic
states of the ions [5,6,12,14,19,32,39]. Optimal state initial-
ization via optical pumping and high-fidelity detection
through resonance fluorescence can be easily performed.

In conclusion, we have introduced a method for simulat-
ing efficiently, i.e., with polynomial resources, many-body
fermionic lattice models in an ion string. These results may

be relevant for quantum simulations of condensed-matter
systems or high-energy physics in nonperturbative regimes.
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[3] E. Jané, G. Vidal, W. Dür, P. Zoller, and J. I. Cirac,

Quantum Inf. Comput. 3, 15 (2003).
[4] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901

(2004).
[5] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and

T. Schätz, Nature Phys. 4, 757 (2008).
[6] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E.

Edwards, J. K. Freericks, G.-D. Lin, L.-M. Duan, and C.
Monroe, Nature (London) 465, 590 (2010).

[7] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I.
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