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The first experimental demonstration of a new Pancharatnam-Berry phase for light beams with spatially

inhomogeneous, or vector, states of polarization referred to as the higher-order Pancharatnam-Berry phase is

presented. This new geometric phase is proportional to light’s total angular momentum, a sum of spin and

higher dimensional orbital angular momentum, sharply contrasting the well-known Pancharatnam-Berry

phase associated with the plane wave state of polarization of a spatially homogeneous light beam. The

higher-order Pancharatnam-Berry phase is directly related to the rotational symmetry of a vortex-bearing

electromagnetic field, associated with the rotational frequency shift of a light beam, and has implications in

quantum information science as well as other physical systems such as electron vortex beams.
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Since its exposition by Berry in 1984 the Berry phase
[1], the phase acquired by a quantum mechanical eigen-
state undergoing a cyclic and adiabatic transformation in
its parameter space, has become a fundamental and unify-
ing physical concept in numerous and varying fields [2].
This phase is referred to as a geometric phase and, because
of its explicit dependence on the geometry of its parameter
space, differs markedly from a dynamic phase being ex-
ceedingly more robust.

Berry’s result was the generalization of an earlier
result by Pancharatnam in 1955 in the context of a light
beam’s plane wave state of polarization (SOP)—the
Pancharatnam-Berry phase (PBP) [3]. This is illustrated
using the corresponding parameter space of the Poincaré
sphere. The Poincaré sphere is the geometric representa-
tion of an arbitrary SOP by a sphere where the poles
represent right and left circular polarization, equatorial
points are linear polarization, and intermediate points be-
tween the poles and equator are elliptical polarization [4].
The cyclic transformation of the SOP is equivalent to a
closed loop circuit on the Poincaré sphere surface. Upon
traversal of the circuit the light beam returns to its initial
SOP and acquires the additional PBP which is directly
proportional to the area enclosed by the circuit [5]. The
PBP is now a well-established phenomenon that has been
observed numerous times yet its manifestation has thus far
been restricted to light beams whose SOPs are spatially
homogeneous [6].

In this work the first experimental measurement of a new
Pancharatnam-Berry phase associated with light beams with
a spatially inhomogenous or vector SOP is presented. These
vector SOPs are higher-order solutions of Maxwell’s equa-
tions and we refer to this new geometric phase as a higher-
order PBP [7]. The higher-order PBP is illustrated using the
recently proposed higher-order Poincaré sphere representa-
tion of a vector SOP [8]. In sharp contrast to the well-known
PBP the higher-order PBP is shown to be proportional to

light’s total angular momentum, a sum of the spin and higher
dimensional orbital angular momentum.
In an elegant framework Berry showed a state c ðRÞ

undergoing a cyclic transformation over a circuit C with
respect to its parameters R acquires, upon return to its
initial state, an additional phase given by �ðCÞ ¼
�RR

C dS � VðRÞ. VðRÞ ¼ rR �A plays the role of a

‘‘magnetic field’’ in the parameter space referred to as
the Berry curvature, A ¼ {c ðRÞjrRc ðRÞ is the associ-
ated ‘‘vector potential’’ referred to as the Berry connection,
andrR is a gradient with respect to the parameters [1]. The
phase � is interpreted as the flux of V through a surface S
enclosed by the a circuit C in the parameter space. In the
parameter space of the HOPS, i.e., the sphere’s spherical
coordinates � and �, jc ðRÞi is given by

jc ð�; ’Þi ¼ cos

�
�

2

�
jR‘ie{�’=2 þ sin

�
�

2

�
jL‘ie�ð{�’=2Þ (1)

where jR‘i ¼ ðx̂þ {ŷÞ expð{‘’=2Þ= ffiffiffi
2

p
and jL‘i ¼

ðx̂� {ŷÞ expð�{‘’=2Þ= ffiffiffi
2

p
are circular polarized phase vor-

tices represented by the poles. The azimuthal phase factor
expð�{‘’=2Þ is the phase vortex, the optical orbital angular
momentum (OAM) eigenstates associated with an OAM
per photon of ‘@ (‘ ¼ 0;�1;�2; . . . ), ‘ is the integer
number of azimuthal phase windings about the beam axis

called the topological charge, and ðx̂� {ŷÞ= ffiffiffi
2

p
is right and

left circular polarization, the optical spin angular momen-
tum (SAM) eigenstates associated with a SAM per photon
of �@ (� ¼ �1) [9]. For a paraxial optical beam the SAM
and OAM are additive with a total angular momentum
(TAM) of J@¼ð‘þ�Þ@. Equation (1) describes a vector
SOP as represented by the HOPS where the poles are the
TAM eigenstates of circular polarized phase vortices, equa-
torial points are linear polarized vector vortices, and inter-
mediate points between the poles and equator are
elliptically polarized vector vortices [8]. The factor of 1=2
in expð�{‘’=2Þ is a consequence of exploiting the 2 ! 1
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homomorphism between the physical SU(2) space of the
light beam and the topological SO(3) space of the HOPS
where a rotation of’=2 about the beam axis is equivalent to
a rotation of ’ in the equatorial plane of the HOPS.

To find the Berry phase using Eq. (1) each component
of the Berry connection A is evaluated where rR ¼
rð�; �; ’Þ is a gradient in spherical coordinates.
The components of A are given by A� ¼
hc ð�; ’Þj{@�c ð�; ’Þi=�, A� ¼ hc ð�; ’Þj{@�c ð�; ’Þi, and
A’ ¼ hc ð�;’Þj{@’c ð�;’Þi=� sin�. Carrying out the de-

rivatives it is easily shown A� ¼ �{ cosð�=2Þ sinð�=2Þ=2�
{ cosð�=2Þ sinð�=2ÞÞ=2 ¼ 0 and A� ¼ 0. The remaining

component A’ depends explicitly on ’ due to the factor

expð�{ð‘þ �Þ’=2Þ. Taking the derivative {@’ which re-

sembles the optical OAM operator [10] gives A’ ¼
�ð‘þ �Þ½cos2ð�=2Þ � sin2ð�=2Þ�=2� sin�. The resulting
Berry connection is A ¼ �ð‘þ �Þ cos�’̂=2� sin�. The
resulting Berry curvature then has only one nonzero com-
ponent, V� ¼ @�ðsin�A’Þ=� sin�, and is given by V ¼
ð‘þ �Þ�̂=�2. Finally, taking dS ¼ �2 sin�d�d�d’�̂ and

evaluating the integral of Eq. (1) where
R
�
0

R�=2
0 �

sin�d�d�d’ ¼ �, the higher-order PBP is found to be

�ðCÞ ¼ �ð‘þ �Þ�=2; (2)

where � is the surface area on the HOPS enclosed by the
circuit C. Equation (2) shows the higher-order PBP is
directly proportional to the TAM of light, a sum of light’s
SAMandOAM. This result verifies the conjecture of Eq. 15
of [8]. For the case of ‘ ¼ 0 the higher-order PBP reduces
to thewell-known PBP. Berry interpreted themagnetic field
V to be that of a monopole centered at the Poincaré sphere
origin [3]. The Berry curvature for the higher-order PBP is
interpreted as a monopole centered at the HOPS origin
whose flux is proportional to the TAM of light.

To experimentally introduce the higher-order PBP to a
light beam a cyclic transformation on the HOPS is physi-
cally carried out. The path considered is the geodesic
triangle ABA shown in Fig. 1(e) which is a path between
the poles. First, a good approximation of a circular polar-
ized phase vortex-bearing Laguerre-Gaussian (LG‘

0) beam

as represented by the north pole A and given by jc ð�;’Þi¼
jR‘i is generated according to the experimental setup in
Fig. 1 and as shown in the first column of Fig. 2(a). To
physically carry out the transformations corresponding to
the path ABA, optical elements that transform both the
SAM and OAM of light are employed, namely, spin-orbit
converters—SOC1 and SOC2. These converters consist of
the combination of a half wave plate (HWP) and
�-cylindrical lens (�CL) mode converter arranged in se-
ries as shown in Fig. 1(d). The beam passes through SOC1
where it is transformed into an orthogonal circular polar-
ized phase vortex of opposite topological charge as repre-
sented by the south pole B and given by jc ð�;’Þi ¼ jL‘i
[4,11]. The beam then passes through SOC2 where it is
transformed into the original circular polarized phase

vortex completing the path ABA and acquiring the addi-
tional higher-order PBP � given by jR0

‘i ¼ jR‘i expð{�Þ.
SOC2 is rotated with respect to SOC1 at an angle�’. This
angle is defined as an equal rotation of the �CL mode
converter and HWP. Via the SU(2) and SO(3) homomor-
phism, this angle is directly related to the surface area� of
the HOPS enclosed by ABA according to 2�’ ¼ �=2.
The resulting higher-order PBP is measured interfero-

metrically using a modified Mach-Zender interferometer
as shown in Fig. 1. Misalignment of the optical elements
can introduce an overwhelming dynamic phase. This is
reduced by having the reference beam of the interferometer
propagate colinearly through the converters such that any

FIG. 1 (color online). Experimental setup: A collimated (waist
size �5 mm) and linear polarized TEM00 mode from a He-Ne
laser (632 nm, 5 mW) is converted into a good approximation of
phase vortex-bearing LG‘

0 mode using a reflective phase only

spatial light modulator (SLM) (Holoeye LC-720) displaying a
blazed fork grating which controls the OAM. A LG�‘

0 mode (the

reference beam) is generated by an odd number of reflections
using a modified Mach-Zender interferometer comprised of two
beam splitters (BSs) and one mirror (M). A HWP and quarter
wave plate (QWP), which controls the SAM, are used to give the
two beams orthogonal circular polarization. The two beams,
given by R‘ and L‘, pass colinearly through two spin-orbit
converters, SOC1 and SOC2, comprised of a HWP and �CL
mode converter arranged in series. The �CL mode converters
consist of two CLs (f ¼ 5 mm) spaced 2f apart. The physical
transformations of the spin-orbit converters correspond to the
path ABA on the HOPS. The beams pass through a linear
polarizer (P) and are imaged onto a CCD camera producing
the interferograms described by Eq. (4). SOC2 is rotated an
angle �� which is equivalent to a 2�� equatorial rotation on
the HOPS and results in a rotation of the lobes of the interfero-
gram. (a) Fork grating displayed on SLM. (b) Intensity of LG‘

0

mode. (c) Intensity of LG�‘
0 mode. (d) Spin-orbit converters.

(e) Cylic path on HOPS. (f) Rotating interferogram.
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dynamic phase will be equal and cancel [12]. The initial
beam is made to be orthogonal to the reference beam, given
by jc ð�; ’Þi ¼ jL‘i, using an odd number of reflections in
the interferometer such that the higher-order PBP of each
beam will be opposite and additive. A linear polarizer
placed after SOC2 allows the two beams to interfere pro-
ducing an interferogram given by

I / ðhR‘j0 þ hL‘j0ÞP̂ P̂ðjR‘i0 þ jL‘i0Þ
/ 1þ cos2ð2‘’þ 2�þ 2�Þ (3)

where P̂ ¼ cos�x̂þ sin�ŷ and � is the rotation of
the linear polarizer transmission axis. The interferogram

described by Eq. (3) is a ’-dependent fringe pattern
consisting of 2‘ intensity lobes. As the term 2�þ 2� is
varied the lobes will rotate. Using Eq. (1) and the SU(2)
to SO(3) homomorphism, 2� can be expressed as 2� ¼
ð‘þ �Þ4�’. For a constant polarizer orientation the rota-
tion of the lobes depends on the rotation of SOC2 and the
TAMof the light beam.When 2� is an integermultiplem of
2� a lobe is replaced by an adjacent lobewhich is equivalent
to a fringe shift. This relationship can be expressed by

�’ ¼ m�=2ð‘þ �Þ: (4)

Interferograms corresponding to TAM J for different com-
binations of OAM ‘ and SAM � as a function of rotation
angle�� for one fringe shiftm ¼ 1 are shown in Fig. 2(a).
The higher-order PBP is measured by verifying Eq. (4).
For each combination of ‘ and� SOC2 is manually rotated
until m ¼ 10 fringe shifts are observed and the total ��
recorded. The higher m reduces error associated with
‘‘drift’’ in the interferometer. It is possible to simulta-
neously measure the higher-order PBP for TAM values of
�J associated with the reference beam by interpreting the
observed lobe rotation as �m. Experimentally recorded
values of �’ as a function of J ¼ ð‘þ �Þ are plotted
against Eq. (4) in Fig. 2(b) showing excellent agreement
with theory. The experiment is repeatedmultiple times with
similar results found each time. It should be noted that the
transformations described above as well as other transfor-
mations on theHOPS such as between the poles and equator
may also be possible using special optical elements such
as q plates [13] or subwavelength diffraction gratings [14].
An analysis of these transformations can be carried out
using the Jones matrix formalism for light with both SAM
and OAM [15]. This is the subject of future work.
The experimentally verified higher-order PBP is mark-

edly different than the well-known PBP because of its
dependence on light’s TAM. This result gives newmeaning
to other physical phenomena such as the rotational fre-
quency shift of a light beam, which was also shown to
depend on light’s TAM [16]. For a light beam with no
OAM the rotational frequency shift has been interpreted as
an evolving PBP on the Poincaré sphere [17]. Here the
rotational frequency shift for a light beam with both SAM
and OAM is interpreted as an evolving higher-order PBP
on the HOPS. It is the rotational symmetry of a light
beam’s electric field that gives rise to the rotational fre-
quency shift and the higher-order PBP. To illustrate this
point instantaneous field distributions, a snapshot in time,
for light beams with varying J are shown in Fig. 3. For
J ¼ 0 (‘ ¼ 1, � ¼ �1) the field has 0-fold rotational
symmetry and the corresponding higher-order PBP is
� ¼ 0. J ¼ 2 corresponds to light beams with (‘ ¼ 1,
� ¼ 1) and (‘ ¼ 3,� ¼ �1), both have twofold rotational
symmetry, and both have an equal higher-order PBP of
� ¼ ��. In general, light beams that are TAM eigenstates
have a J-fold rotational symmetry and a higher-order PBP
that depends on the TAM J.

FIG. 2 (color online). Experimental Data. (a) Table of inter-
ferograms for Eq. (4). Each row displays the observed interfero-
gram lobe rotation for one full fringe shift (m ¼ 1)
corresponding to the phase shift 2� in steps of �=2 for a beam
with TAM J ¼ ð‘þ �Þ. The total SOC2 rotation �’ is shown.
(b) Theoretical (red) and experimental (blue) plot of Eq. 5 for
m ¼ 10 fringe shifts. Crosses represent sgnð‘Þ ¼ sgnð�Þ and
circles represent sgnð‘Þ � sgnð�Þ. Error bars are smaller than
the markers.
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Though this experiment has focused on a particular
vector SOP represented by the HOPS, this result can be
generalized to other vector SOPs. The optical OAM eigen-
states form a complete orthogonal set. It is therefore pos-
sible to represent a light beam as the linear combination of
OAM eigenstates. This is referred to as spiral harmonics,
where the beam is said to have a corresponding OAM
spectrum [18]. An arbitrary vector SOP can be represented
by the linear combination of right circular and left circular
polarized spiral harmonics and the constituent components
being the TAM eigenstates of circular polarized phase
vortices each have an associated higher-order PBP.

Because of its robustness and distinction from a dynamic
phase, the geometric phase has found novel applications
in quantum information science where, for example, it has
been proposed as a topological phase gate [19]. The higher-
order PBP may lead to new applications in quantum infor-
mation science that utilize the TAM eigenstates of light
such as the photonic analog of a topological phase gate
[20], the exploration of entanglement [21], photonic super
dense coding [22], and manipulation of single-photon Bell
states exhibiting hybrid entanglement between light’s
SAM and OAM eigenstates [23].

In conclusion, a new PBP referred to as the higher-order
PBP has been theoretically and experimentally presented
for the first time. The higher-order PBP differs from the
well-known PBP in that it depends explicitly on the TAM
of a light beam and is associated with the rotational sym-
metry of a light beam’s electric field which is tied to other
physical phenomena such as the rotational frequency shift
of a light beam. This result has important implications for
vector SOPs and vortex beams such as the higher-order
modes of optical fibers, but also in other physical systems
such as vortex-bearing electron beams [24]. This is par-
ticularly interesting in the context of a recently proposed
spin-orbit conversion of a vortex electron beam because

the higher-order PBP would then be related to a real
magnetic field [25].
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