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We theoretically study the magnetization dynamics of a thin ferromagnetic film exchange coupled with

a surface of a strong three-dimensional topological insulator. We focus on the role of electronic zero

modes imprinted by domain walls (DWs) or other topological textures in the magnetic film.

Thermodynamically reciprocal hydrodynamic equations of motion are derived for the DW responding

to electronic spin torques, on the one hand, and fictitious electromotive forces in the electronic chiral

mode fomented by the DW, on the other. An experimental realization illustrating this physics is proposed

based on a ferromagnetic strip, which cuts the topological insulator surface into two gapless regions. In the

presence of a ferromagnetic DW, a chiral mode transverse to the magnetic strip acts as a dissipative

interconnect, which is itself a dynamic object that controls (and, inversely, responds to) the magnetization

dynamics.
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Following theoretical predictions [1] and experimental
realizations [2] of three-dimensional topological insulators
(TIs), vigorous ongoing activities in this burgeoning field
are aimed at introducing spontaneous symmetry breaking
mechanisms into the system. This could be accomplished
by bulk or surface doping to induce magnetism or super-
conductivity in the parent (essentially free-electron) TI, or
by a heterostructure design wherein symmetry breaking is
instilled at the TI surface by a quantum proximity effect.
We are following the latter route, considering an insulating
ferromagnetic layer (MI) capping the bulk TI, such that the
TI surface states are exchange coupled to the collective
magnetic moment of the MI. Previous theoretical inves-
tigations of a similar TI-MI heterostructure were con-
cerned with current-induced spin torques experienced by
a monodomain MI [3], Gilbert damping by a doped TI [4],
electric charging of magnetic textures [5], and the rectifi-
cation of charge pumping by a monodomain precession
[6], all in case of a well-defined spatially uniform sign of
the time-reversal symmetry breaking gap in the TI. The
essential physical ingredient underlying the key ideas in
these papers is the axion electrodynamics [7] associated
with the TI [8], with a quantized magnetoelectric coupling
that is odd under time reversal. In this Letter, we are
interested in salient features associated with dynamic mag-
netic textures that imprint a spatially inhomogeneous gap
onto the TI surface states, both in regard to its magnitude
and sign. The latter, in particular, engenders electronic
chiral modes at the magnetic domain boundaries [9],
whose hydrodynamics become intricately coupled with
magnetic precession.

According to the spin-charge helicity of the TI elec-
tronic states, the spin-transfer torques acting on the MI
are locked with the self-consistent electronic charge cur-
rents in the TI. These currents, in turn, can respond to a

combination of electromagnetic fields and fictitious forces
induced by MI dynamics, having several distinct contribu-
tions: (i) two-dimensional (2D) surface currents related to
the half-quantized anomalous Hall effect, whose sign de-
pends on the orientation of the capping magnetic domain,
(ii) persistent currents governed by the magnetization tex-
ture in the capping MI layer, and (iii) Fermi-level chiral
currents along the domain walls (DWs) separating regions
with an opposite Hall conductance. As an illustrative ex-
ample, we will describe how the DW position and an
internal coordinate that parametrizes its Bloch-to-Néel
transformation are responding to a chiral TI current flow-
ing along the DW. Considering the inverse charge current
pumped by the DW dynamics, we highlight a peculiar
structure of the Onsager reciprocity, which reverses the
DWmagnetization as well as the chirality of the associated
electronic mode.
Our focus will be centered on a ferromagnetic DW

separating regions with an out-of-plane magnetization di-
rection deep into the respective domains (which is true for
sufficiently thin films, e.g., CoFeB alloys [10]). See Fig. 1
for a schematic. Let us treat the DW as a stiff solitonic
quasi-1D object, parallel to the y axis, whose translational
motion and soft internal dynamics can be described by
generalized coordinates [11]. To be specific, we start
with the following generic free energy for an isolated
magnetic film with magnetic spin texture mðrÞ (jmj � 1):

F0½m� ¼ 1

2

Z
d2rfA½ð@xmÞ2 þ ð@ymÞ2� � Km2

zg; (1)

where A is the exchange stiffness parameter and K > 0 is
the out-of-plane anisotropy constant. A one-dimensional
DW running along the y axis and separating magnetic
domains with mz ¼ �1 at x ! �1, which minimizes
free-energy (1), is then given in polar angles by
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�ðrÞ ¼ 2tan�1e�ðx�xdwÞ=�dw ; �ðrÞ ¼ �dw; (2)

which parametrize the position r � ðx; yÞ-dependent mag-
netization direction m ¼ ðsin� cos�; sin� sin�; cos�Þ.
�dw ¼ ffiffiffiffiffiffiffiffiffiffi

A=K
p

is the DW width. The DW energy is degen-
erate with respect to the position xdw and the azimuthal
angle �dw. In particular, if � ¼ 0 or � we have a Néel
wall, and if � ¼ ��=2 we have a Bloch wall. In practice,
however, the degeneracy with respect to xdw is lifted by
spatial pinning fields, while the degeneracy with respect to
�dw by a homogeneous applied field or spin anisotropy
(induced, e.g., by spin-orbit interactions) in the xy plane,
which we will take account of below. For sufficiently
gentle perturbations of this kind, the zero modes associated
with xdwðtÞ and �dwðtÞ are thus converted into soft collec-
tive excitations, which are at the core of our analysis.

We now set out to develop a self-consistent hydrody-
namic theory for a DW bound with a gapless chiral mode,
which interacts with regions of incompressible TI Hall
fluids flanking it on the sides. The introductory material
on magnetoelectric properties of the TI, its exchange cou-
pling to the MI, and the emergence of a chiral mode bound
to a DW is relegated to the Supplemental Material [12].
From the electronic-structure point of view, the chiral
mode patches two quantum Hall regions whose Chern
number [13] changes by unity, between the values of
�1=2 imprinted by the magnetic domains. The underlying
magnetoelectric effect is fundamentally distinct from the
one discussed in Ref. [5], as the DW here coexists with the
parity-anomaly point mz ¼ 0.

A complete picture of our coupled magneto-
hydrodynamic system requires us to consider also the
spin-transfer torque that is reciprocal to the DW-driven
electromotive forces [14]. Such torque acting on the mag-
netization is given, due to the MI-TI exchange (see [12] for
details),

H0 ¼ Jðmx�̂x þmy�̂yÞ þ J?mz�̂z; (3)

by (within the Landau-Lifshitz phenomenology [15])

S@tmj� ¼ h�mH
0i �m ¼ ðJ�xy þ J?�zzÞ �m: (4)

Here, � � ð�x; �y; �zÞ � ð�xy; �zÞ is the TI surface spin

density (defined by � ¼ h�̂i, in terms of Pauli matrices �̂)
and S is the saturation spin density of the ferromagnet. It
follows from the Dirac Hamiltonian, H0 ¼ vðp� eAÞ �
z� �̂ þ e’, furthermore, that the in-plane spin density
�xy is essentially equivalent to the charge current density,

since

j ¼ �h�AHi ¼ evz� � ) �xy ¼ ðevÞ�1j� z: (5)

Equation (5) is an exact identity between the total (i.e.,
equilibrium plus nonequilibrium) current density and the
in-plane spin density of the TI electrons, which is un-
spoiled by electron-electron interactions and ferromag-
netic proximity. In particular, the chiral states, which
propagate in the y direction and have spin quantized along
the x axis, carry a 2D equilibrium current density that is
estimated as (see [12] for details)

j � ðev=�Þð�dw=2�@vÞz� x� ðe=2�@ÞJ?@xmzy; (6)

where we put �dw � �J?@xmz for the chiral-mode band-
width in terms of the characteristic (spatial) chiral-mode
width �. From a purely phenomenological perspective, on
the other hand, an equilibrium charge current associated
with a smooth static texture is given, to the first order in
general magnetic inhomogeneities, by

j ¼ 	J?z� rmz; (7)

which should be valid both near and away from the DW, as
long as the current is analytic in the magnetic texturemðrÞ.
This current is time-reversal odd, mirror symmetric (in the
xy plane), and divergenceless. We, furthermore, remark
that it does not contradict the well-known result for the
electromagnetic response of Dirac electrons [16], which is
exact only for a strictly homogeneous system. The phe-
nomenological coefficient 	 can, in general, be a function
of ðJ?mzÞ2, which we take to be constant in the limit of the
weak exchange J?. Comparing Eqs. (6) and (7), we con-
clude that 	� e=2�@ in our model, which is suggestive of
a universal result (as long as � � �dw).
In the presence of an equilibrium texture-induced cur-

rent, the spin torque is given by

S@tmj� ¼ �mF� �m; (8)

FIG. 1 (color online). Schematic of a DW in a ferromagnetic
strip with an out-of-plane easy (z) axis anisotropy, deposited on
the surface of a TI. The DW (of width �dw) is parametrized,
according to Eq. (2), by two soft dynamic coordinates: its
position xdwðtÞ and azimuthal angle �dwðtÞ. At the DW position,
xdw, the magnetization m lies fully in the xy plane (forming
angle �dw with the x axis). A chiral electron mode (of width
� � �dw) formed in the TI under the DW carries transport
current Idw at its exit point, which is governed by the voltage
Vy applied to the TI surface at its entrance and the fictitious

electromotive force generated by the DW dynamics along its
length. An Onsager-reciprocal spin torque affects DW dynamics
in the presence of Idw.
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in terms of the TI free-energy functional F�½m� engen-
dered by the MI-TI exchange. According to Eq. (7), this
free-energy F� can be explicitly found by integrating

�mxy
F� ¼ J�xy ¼ ðJ=evÞj� z ¼ ð	JJ?=evÞrmz (9)

over mxy, at a fixed mz [17]:

F� ¼ ð	JJ?=evÞ
Z

d2rm � rmz þ F0
�½mz�; (10)

where F0
� is a functional of mz only [which therefore must

derive entirely from the J? exchange in Eq. (3)]. To the
leading order in the MI-TI exchange coupling J?, F0

�

contributes merely to the out-of-plane anisotropy K in
Eq. (1), which can be absorbed by a redefinition K ! K þ
OðJ2?Þ � K	. Higher-order terms in F0

�, including those

that depend on spatial inhomogeneities in mz, would ap-
pear only at order J4? (while cubic terms are prohibited by

the time-reversal invariance). The leading-order MI-TI
exchange coupling thus produces an anisotropy / JJ?,
which enhances the tendency to form magnetic textures
(such as Skyrmion lattices), and a texture-independent
(easy-axis) out-of-plane anisotropy / J2?, corresponding
to the first and second terms in Eq. (10), respectively.

In addition to the equilibrium current density (7), there
are also surface currents driven by the real and fictitious
electromagnetic fields and the current carried by the gap-
less chiral mode. The latter may result in dissipation if
connected to reservoirs (such as ungapped TI regions). All
these currents contribute to the torque (4). [If Idw is the 1D
chiral current, the corresponding 2D current density in the
y direction is jdw 
 Idw�ðx� xdwÞ, which is localized on
the scale of the chiral-mode width �.] In particular, as
discussed in the Supplemental Material [12], the torques
arising from the effective electric-field-induced currents
correspond to the Chern-Simons action associated with
the effective 3-potential A
 � A
 þ a
 [with A
 ¼
ð’;�AÞ denoting the physical and a
 ¼ ð0;�aÞ, where
a ¼ ðJ=evÞm� z, the exchange-induced contributions].

Henceforth, focusing on the configuration sketched in
Fig. 1, a finite-length DW cuts across a ferromagnetic strip
connecting semi-infinite gapless 2D reservoirs flanking its
sides. In this case, the reservoirs provide an equilibration
and dissipation mechanism for the dc transport. In particu-
lar, at low frequencies, the chiral current is given by the
Landauer-Büttiker formula [18]

Idw ¼ gQ
Z
DW

dyEy � gQV y (11)

for the current in the y direction in response to the total
effective field Ey applied along the DW length (the mag-

netic strip width). V y ¼ Vy þ vy is the corresponding

effective voltage (Vy applied and vy induced by magnetic

dynamics) and gQ � e2=h is the conductance quantum.

The current Idw in Eq. (11) is defined at the exit point of
the chiral mode and, concerning the applied voltage Vy,

only the effective electric field along the DW wire and the
chemical potential applied to the entrance point of the
chiral mode need to be included. The chemical potential
at the exit point of the chiral mode, on the other hand, has
no effect on the current (at both the exit and the entrance)
in the corresponding DW. We emphasize that the current
entering the chiral mode can generally be distinct from Idw.
In particular, the dynamically induced voltage vy, as well

as the voltage due to an electric field applied along the DW,
does not affect the entrance current, which is fully gov-
erned by the chemical potential applied at the respective
lead. In this case, any imbalance between the currents at
the ends of the DW is absorbed by the gapped 2D regions
flanking the chiral mode [in accordance with the effective
magnetic field Bz ¼ Bz þ bz [16], where bz �
z � r� a ¼ �ðJ=evÞr �m is the texture-induced field],
which we schematically sketch in the bottom panel of
Fig. 2. Since the currents entering and exiting each indi-
vidual DW thus depend very sensitively on the electrostatic
considerations concerning the breakdown of the effective
electrochemical potentials into the electric and chemical
counterparts, we will focus on the noninteracting (i.e.,
well-screened) electrons driven by a combination of a

FIG. 2 (color online). The Onsager reciprocity relates voltage-
induced DW dynamics (via spin torques) in the top panel
[Eq. (14)] to the magnetization-dynamics-generated current
(via fictitious electromotive force) in the bottom panel
[Eq. (16)]. Note that the DWs in the bottom panel are mapped
back onto their time-reversed parents in the top panel by a �
rotation in the xy plane. This means that _Q pumped by _�dw for
the right chiral mode is the same in both panels. The left DW is
treated as pinned (and thus magnetically inert) in our treatment.
However, when the electron-electron interactions are taken into
account, electrostatic charge imbalance produced by fictitious
forces near one DW could induce currents also along the other
DW, making such a double-DW system generally coupled.
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chemical-potential bias at the leads and magnetization
dynamics along the DW.

We are now fully equipped to derive the equations of
motion for the collective soft DW coordinates xdwðtÞ and
�dwðtÞ that parametrize the DW position and internal
structure according to Eq. (2). In the presence of the
(equilibrium and nonequilibrium) current-induced spin tor-
ques [corresponding to Eqs. (10) and (11), respectively] as
well as a uniform magnetic field h applied in the y direc-
tion, the full Landau-Lifshitz-Gilbert equation [15] for the
magnetization dynamics becomes

Sð1þ �m�Þ@tm ¼ m�H	; (12)

where� is the dimensionless Gilbert damping constant and
the total effective field [including the usual Larmor piece
Heff � ��mF0 and the spin torques] is given by

H	 ¼ A@2xmþ K	mzzþ hy þ 		ðz@xmx � x@xmzÞ
� j	x�ðx� xdwÞ: (13)

Here, 		 � 	JJ?=ev (with 	� e=2�@), according to
Eq. (10), and j	 ¼ ðJ=evÞ �Idw, according to Eq. (5). �Idw is
the average transport current flowing under the DW along
the y axis [19]. 		 and j	 thus parametrize the equilibrium
and nonequilibrium spin torques, respectively.

The equations of motion for the generalized coordinates
fqig � fxdw; �dwg are derived from Eqs. (12) and (13) by
integrating Eq. (12),

R
d2r@qim � fm�½Sð1þ�m�Þ@tm¼

m�H	�g [11], upon substitution of ansatz (2). The key
underlying physical assumption in this procedure is that
the internal DW structure is dominated by the A and K	
terms in Eq. (13), such that it has a fixed width �dw 
ffiffiffiffiffiffiffiffiffiffiffiffi
A=K	

p
, while the dynamics of slow variables qi are gov-

erned by the other terms in Eq. (13). Carrying out this
program, we get (after a somewhat tedious but straightfor-
ward calculation) the following simple equations:

_xdw ¼ � f� þ j	 sin�dw

ð4þ �2ÞS ; _�dw ¼ � �

2�dw

_xdw: (14)

Here,

f� � � 1

L
@�dw

F ¼ 		�
2

sin�dw þ h�dw� cos�dw (15)

is the generalized force (per unit of DW length L) thermo-
dynamically conjugate to the angle �dw. Since the domain
wall is not pinned in the x direction, the force �@xdwF

conjugate to xdw vanishes in our model. The energy dis-

sipation P � �ð@�dw
FÞ _�dw � ð@xdwFÞ _xdw associated with

magnetic dynamics (in the absence of transport current j	)
is thus guaranteed to be positive in an out-of-equilibrium
situation when �> 0. The spin-torque-driven DW dynam-
ics in Eq. (14) reminds us of a dc Josephson effect ( _Q /
sin’). It is, in particular, noteworthy that the equilibrium
and nonequilibrium spin torques add up, such that the
latter can be formally absorbed into a redefinition of 		:

		 ! 		 þ 2j	=�. In the absence of the applied field,
h ¼ 0, the dynamics would thus settle down at �dw ¼ 0
or � (a Néel wall), for 		 + 0 (corresponding to the
ordinary or � Josephson junction, respectively). In the
absence of spin torques but a finite field h along the y

axis, the dynamics (that are overdamped as _�dw / f�)

would flow toward �dw ¼ ��=2 (a Bloch wall), for
h _ 0, which corresponds to the lowest magnetostatic
energy.
Supplementing Eqs. (14) with the Onsager reciprocity

principle [20], dictates how the DW dynamics induce
transport current along the chiral mode. (See Fig. 2.) To
infer this, consider a voltage Vy-induced current: j	 ¼
ðgQJ=evÞVy. From Eqs. (14) and (15), which describe

how this voltage induces dynamics ( _xdw, _�dw), we recover
their Onsager (time-reversed) counterpart in the charge
sector:

_Q ¼ gQJ

ev

� sin�dw

2�dwð4þ �2ÞS@�dw
F ! � gQJ

ev
L _�dw sin�dw

¼ gQJ

ev
L@tmxðxdwÞ; (16)

where on the second line we dropped the term that is
diagonal in the charge sector and thus outside of the
reciprocal reasoning [21]. In the final equality of
Eq. (16), we recognize exactly the Landauer-Büttiker for-
mula (11) for the magnetization-dynamics-driven charge
current. It is crucial to notice that the DW chirality flips
under time reversal, as illustrated in Fig. 2. The chargeQ in
Eq. (16) pumped by the DW dynamics in the top panel of
Fig. 2 thus enters the reservoir that is opposite to the one

where the voltage Vy is applied, as must be since _�dw

certainly induces the current only downstream of the chiral
mode. This proves internal consistency of our theory.
In summary, we developed a self-consistent hydrody-

namic description of a magnetic DW bound with its parity-
anomaly chiral electron mode. DW dynamics parametrized
by slow variables xdw and�dw share similarities with ac/dc
Josephson relations for charge and phase, respectively. In
particular, the DW switches between two types of Néel
walls (corresponding to 0 and � junctions) depending on
the sign of the spin torque, and two types of Bloch walls
depending on the sign of the applied field. Reciprocally, the
chiral transport is pumped by the DW dynamics, in accord
with fictitious gauge fields along the DW length. This
coupled system provides a ballistic electron interconnect,
which can be imprinted onto TI surfaces and dynamically
controlled by magnetic fields, opening rich possibilities for
‘‘magnetic lithography’’ of electronic nanostructures on TI
surfaces.
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