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Quantum phase slips are traditionally considered in diffusive superconducting wires which are assumed

homogeneous. We present a definite estimate for the amplitude of phase slips that occur at a weak

inhomogeneity in the wire where local resistivity is slightly increased. We model such a weak link as a

general coherent conductor and show that the amplitude is dominated by the topological part of the action.

We argue that such weak links occur naturally in apparently homogeneous wires and adjust the estimate to

that case. The fabrication of an artificial weak link would localize phase slips and facilitate a better control

of the phase-slip amplitude.
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The phase-slip processes in superconducting wires and
long Josephson-junction arrays remain an active research
subject both experimentally and theoretically [1–4]. In the
course of a phase slip, the superconducting order parameter
fluctuates to zero at a point in the wire while the super-
conducting phase difference along the wire changes by
�2�. The incoherent phase slips provide a mechanism
for superconducting wires to retain a finite resistance at
temperatures below the superconducting transition. Phase-
slip events are thermally activated at temperatures close to
critical [5] and triggered by quantum fluctuations at low
temperatures [6]. Progress in microfabrication has enabled
production of superconducting wires with diameters of a
few tens of nanometers in which incoherent quantum phase
slips have been studied experimentally [7–10]. Recently,
much attention has been paid to coherent phase slips
[11–14]. It has been argued that a wire where coherent
phase slips take place may be regarded as a new circuit
element—the phase-slip junction [12]—which is a dual
counterpart of the Josephson junction with superconduct-
ing phase difference replaced by charge. The phase-slip
qubit [11] [see Fig. 1(b)] and other coherent devices [13]
have been proposed. The novel functionality may be useful
in realization of the fundamental current standard dual to
the Josephson voltage standard [12].

The coherent phase slips in a wire are characterized by a
quantum amplitude ES rather than a rate of an event [1,15].
The amplitude depends exponentially on the instanton
action which is usually dominated by the phase-slip
‘‘core’’ Score ¼ �ðGQR

0�Þ�1 where R0 is a wire normal-

state resistance per unit length, � is the coherence length,
and GQ � e2=�@ (hereafter @ ¼ 1). The numerical factor

� depends on the details of the core profile which are
unknown. Therefore, the amplitude ES / e�Score is expo-
nentially small for not very resistive wires and is difficult to
predict for the specific experimental settings since even a
small arbitrariness in � would amount to orders of magni-
tude ambiguity in ES [11].

In this Letter, we report on a definite estimate of ES

[Eq. (1)] for a weak link in diffusive wire where resistivity
is slightly and locally enhanced. We argue that such weak
links occur naturally in apparently homogeneous wires and
adjust the estimate to that case as well.
To justify themodel, let us first note thatmuch attention is

paid experimentally tomaking thewires as homogeneous as
possible [10]. Indeed, if the resistance of the wire is domi-
nated by a singleweak link, the devicewould be a Josephson
junction which is the opposite of the phase-slip junction
intended. However, a weak inhomogeneity, where the local
resistivity of thewire is only slightly larger, will not spoil the
phase-slip character of the junction. The condition for this
is just that the resistance of the weak link is much smaller
than the overall normal-state resistance of the wire. Such
weak links occur naturally in apparently homogeneous
wires. Owing to exponential dependence on resistivity, the
phase slips will be localized at theweak links. Thus,making
such a weak link artificially would provide a better control
for ES, since one knows where the phase slips occur.
This motivates us to consider a simple yet general model

of a weak link where the link is described as a short (length
much smaller than �) coherent conductor characterized by
a set of spin-degenerate transmission eigenvalues fTpg. We

FIG. 1. (a) Superconducting diffusive wire with a weak link
(dashed rectangle) connecting bulk superconducting electrodes.
(b) Embedding the wire into a superconducting loop makes a
phase-slip flux qubit [11]. (c) We model the weak link as a
general coherent conductor characterized by a set of transmis-
sion eigenvalues fTpg.
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solve this model and obtain the accurate estimate for the
amplitude

ES � 2�
ffiffiffiffiffiffiffiffiffiffiffiffi

X

p

Tp

s

Y

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Tp

q

(1)

under approximations specified in the text, where � is the
superconducting order parameter in the wire. We show that
the amplitude is dominated by the topological part of the
action emerging from�2� phase winding in the phase-slip
process. Finally, we use the known transmission distribu-
tion of a diffusive conductor and obtain an estimation of ES

valid for homogeneous wires as well.
The system under consideration is depicted in Fig. 1.

The weak link (or, ‘‘contact’’) is modeled as a general
coherent conductor with conductance Gc ¼ GQ

P

pTp.

The wire is much thinner than � and is characterized by
the length L (L � �), normal-state resistance R0, and
capacitance C0, where 0 signifies that these quantities are
defined per unit length. For a wire thickness in tens of
nanometers range, the geometric inductance L0

g is negli-

gible with respect to the kinetic inductance L0
k � R0=��.

For concreteness, we consider the wire in a phase-slip qubit
configuration [Fig. 1(b)]. This does not affect the evalu-
ation of ES.

Generally, the quantum dynamics of such systems is
described by an imaginary-time action that is path inte-
grated over fluctuating superconducting order parameter
�ð�; xÞ, where x is the coordinate along the wire. Our
model brings about drastic simplifications. The modulus
of order parameter can be regarded as constant, its phase
�ð�; xÞ being the only dynamical variable. The action
comprises two terms, S½�� ¼ Sc½�� þ Sw½��, which de-
scribe the weak link and the wire, respectively. The action
Sc for tunnel coupling was obtained in [16]. We generalize
the result to generic coherent contact along the lines of
Ref. [17]. The action reads

S c ¼ � 1

2

X

p

Tr ln

�

1þ Tp

4
ðfĜ1; Ĝ2g � 2Þ

�

(2)

with Ĝjð�; �0Þ ¼ ei�jð�Þ�̂3=2Ĝ0ð�� �0Þe�i�jð�0Þ�̂3=2. Here,

Ĝ1;2 are imaginary-time Green’s functions in a wire on

the left and right side of the weak link [cf. Fig. 1(c)], �1;2

are the corresponding phases, Ĝ0ð!Þ ¼ ð!�̂3 þ j�j�̂1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 þ j�j2p

is the Green’s function of a homogeneous
superconductor, and �̂i are the Pauli matrices in Nambu
space. We see that this action depends on the phase differ-
ence �ð�Þ � �2ð�Þ ��1ð�Þ only.

The resistance of the weak inhomogeneity in the wire is
naturally much smaller than the total resistance of the
wire, Rc � LR0 (Rc � G�1

c ). The same pertains to induc-
tance. Under these conditions, the minima of the action
correspond to a well-defined fluxon states where the wind-
ing of the phase along the wire takes values 2�n, n
being integer. The energies of the states are given by

En¼ð��n�0Þ2=2LL0
k, where � is the flux penetrating

the loop and�0 ¼ �=e is the flux quantum. Technically, it
is convenient to ascribe the phase difference to the weak
link and concentrate on � ¼ �0=2, where minima n ¼ 0,
1 are degenerate. The phase-slip amplitude ES is then
computed from analysis of instantons in �ð�Þ connecting
these two energy-degenerate minima and equals to the
energy splitting of the resulting qubit states [11].
The wire provides an electromagnetic environment

for the phase propagation. In our situation, �@x� � 1
and the effective environment is linear. Owing to this, the
quadratic action Sw can be expressed in terms of�ð�Þ [18],
Sw½��¼ ð8�2GQÞ�1

R1
0 d!!Yð!Þj�ð!Þj2, where Yð!Þ ¼

½L0ð!Þ=C0��1=2 ½tanhð!L1=vpÞ þ tanhð!L2=vpÞ��1 �
ðLL0

k!Þ�1, L1 (L2) is the length of the wire left (right)

from the contact and vpð!Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L0ð!ÞC0p

. HereL0ð!Þ is
the inductance in imaginary frequency obtained by analytic
continuation of impedance. It accounts for the fact that the
wire is inductive with L0 ¼ L0

k at subgap energies ! �
2�, and resistive with L0ð!Þ ¼ R0=! at large energies
! � 2�. This completes the theoretical description of
the model. The instanton solution �ð�Þ minimizes S½��
satisfying �ð�1Þ ¼ 0 and �ð1Þ ¼ 2�.
We want to concentrate on the case when the estimation

of ES does not depend on wire parameters. This is not
always so and we need to discuss various regimes that may
be realized in the system (Fig. 2). The relevant wire pa-

rameters are the wave impedance Zw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L0
k=C

0
q

and the

characteristic charge propagation time �w, which is esti-

mated as either the plasmon propagation time L
ffiffiffiffiffiffiffiffiffiffiffi

L0
kC

0
q

(�w� � 1, superconducting response) or RC time
L2R0C0 (�w� � 1, dissipative response). Let �p be the

optimal instanton duration. The weak-link action can be
then estimated as Sc ’ ðGc=GQÞmaxð1; �p�Þ. As to the

wire action, it corresponds to the dissipative response Sw ’
ðGQZwÞ�1 lnð�w=�pÞ if charge propagation does not reach

FIG. 2. The phase-slip regimes (see text) in parameter space
ðGcZw; �w�Þ, where Zw is the wave impedance of the wire and
�w is the characteristic time of charge propagation through the
wire. We concentrate on the regions I and II, where ES does not
depend on the wire parameters.

PRL 108, 187002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
4 MAY 2012

187002-2



wire ends for the time �p and to the capacitive response

Sw ’ LC0=GQ�p otherwise. The �p is found from mini-

mizing S ¼ Sc þ Sw which gives rise to five regimes
depicted in Fig. 2.

For ‘‘short’’ wires (�w� � 1) the action is dominated
by the weak link and �p ’ 1=� (region I). For ‘‘long’’

wires (�w� � 1), we encounter the variety of regimes. At
sufficiently large Gc, the above estimations still hold
(region II). Upon decreasing Gc, the dissipative wire re-
sponse starts to dominate while �p ’ 1=� (region III). At

Gc ’ Zw, the instanton duration �p increases. It is deter-

mined from the competition of inductive response of the
weak link and dissipative response of the wire (region IV).
Upon further decrease of Gc, the �p matches �w. Below

this, the wire response is capacitive and �p is determined

from the competition of inductive response of the weak
link and the capacitive response of the wire (region V),
very much like in traditional theory of macroscopic phase
tunnelling [16]. We conclude that there is a large part of the
parameter space (regions I, II) where instanton action is
dominated by Sc and concentrate on the minimization of
this part of the action.

For an arbitrary transmission set fTpg the analytical

solution cannot be obtained, and we have treated the
problem numerically [19]. However, the analysis of the
numerical results permitted us to formulate a good analyti-
cal approximation. To outline this, let us note that the
action in Eq. (2) can be expressed in terms of the eigen-

values �n of a Hermitian operator �̂ � ðĜ1 � Ĝ2Þ=2,

S c½�� ¼ � 1

2

X

p;n

lnð1� Tp�
2
nÞ: (3)

One can deduce some properties of the eigenvalues that do
not depend on details of the instanton profile �inð�Þ. First
of all, j�nj � 1. Importantly, there is a single eigenvalue
precisely at � ¼ 1. This is guaranteed by topological

properties of �̂ with respect to variations of �inð�Þ; a
similar discussion is provided in [20]. Generally, the num-
ber of these special eigenvalues is set by the winding
number of�ð�Þ, which is 1 in the case under consideration.
All other eigenvalues come in pairs ��.

The special eigenvalue gives a topological contribution
to the action

S c1 ¼ � 1

2

X

p

lnð1� TpÞ; (4)

which presents a lower bound for Sc. This lower bound
could have been realized if there was an instanton profile
for which all nonspecial �n are zero. In the normal-metal
case such instantons indeed exist and can even be found
analytically [21]. This is not the case for superconducting
action. However, the numerics prove that for the optimal
instanton all nonspecial �n are small and the topological
contribution gives an accurate estimation of the overall

action. For instance, in the tunnel limit (Tp � 1) Sc ¼
0:528Gc=GQ while the topological bound is Sc1 ¼
0:5Gc=GQ. In all cases investigated, the relative accuracy

of the topological approximation was better than 6%.
Formally, the exponential dependence of ES could amplify
even this small error by orders of magnitude; yet this does
not happen for any ES of interest (see Fig. 3).
This gives us the value of the action. We also need

to compute the prefactor. The prefactor is evaluated

by the standard instanton techniques yielding ES ¼
2ðR d� _�2

in=2�Þ1=2ðD0Þ�1=2e�Sin . The ratio of determinants

D0 ¼ det0ð�2S=��2jinÞ= detð�2S=��2j0Þ takes into ac-
count fluctuations with respect to the instanton and trivial
trajectories; the prime 0 denotes that the zero eigenvalue
intrinsic to the instanton is omitted in the numerator.
It is important to note that the high eigenvalues hn at

n � 1 of �2S=��2 are linear in n. This is related to the
frequency dependence of the integral kernels in the action:
for rapidly varying �ð�Þ, the action reads Sc ¼
ðGc=16�

2GQÞ
R

d!j!jj�ð!Þj2 (assuming ! � �). This

implies logarithmic divergence of lnðD0Þ at large energies.
In principle, account of the wire capacitance might provide
an upper cutoff needed. However, we find it more consis-
tent to cancel the divergence by taking into account the
renormalization of transmission eigenvalues.
Indeed, it is known that Coulomb interaction leads to

energy-dependent renormalization of Tp [22]. Under

current-bias conditions, which is the case under consid-
eration, the renormalization reads dTp=d lnE ¼ Tpð1�
TpÞ=

P

pTp. Correcting the transmissions in Sc1 with the

above equation indeed cancels the divergence of

ðD0Þ�1=2. It implies that the Tp in all formulas must be

taken at E ’ � rather than at unphysical high energy.
The procedure is similar to the common treatment of
ultraviolet divergencies in the instanton determinant [23].
This brings us to Eq. (1). We stress that by virtue of

FIG. 3. Phase-slip amplitude ES for tunnel contact, double-
barrier junction, and short diffusive bridge estimated using
topological action Sc1 (solid curves). The true ES with a non-
topological contribution taken into account is shown in the
tunnel limit (dash-dotted curve).
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instanton approximation, this relation is only valid for
ES � �.

To make concrete predictions (Fig. 3), we need to spec-
ify the type of weak link. Using known transmission dis-
tributions [24] we find Sc1 ¼ �Gc=GQ with � ¼ 1=2, 1,

�2=8 for a tunnel junction, double tunnel junction, and
diffusive weak link, respectively. The phase-slip amplitude
ES for these types of weak links is shown in Fig. 3 for
Tc ¼ 1:2 K. For qubit applications, ES should be in the
gigahertz range. In this range, ES at a given Rc varies by 2
orders of magnitude depending on the type of the weak
link. The dash-dotted curve for the tunnel junction illus-
trates the accuracy of topological approximation.

Let us use the results for the weak link to suggest a better
estimation of ES in a homogeneous wire. There, the spatial
extent of the phase-slip core is of the order of � [1]. Let us
separate the wire into pieces of the length lc and treat each
piece as a diffusive weak link of corresponding resistance,
Rc ¼ R0lc. We can find lc by comparing the critical current
of a single weak link, Ic ¼ 1:32��=2eRc, and that of a

homogeneous wire, Icw ¼ ��=3
ffiffiffi

3
p

eR0� [25]. This gives

lc � 3:43� and E	
S ¼ 1:08�ðGQR

0�Þ�1=2e�0:360=GQR
0� per

link. The amplitudes of the pieces add to ES ¼ E	
SL=lc.

The amplitude E	
S versus R0� is plotted in Fig. 4 along

with several values of R0� for fabricated nanowires. Owing
to exponential dependence on R0�, the phase-slip ampli-
tude varies by 9 orders of magnitude. We conclude that for
most wires the expected E	

S is smaller than 10�6�, with an
exception of Ref. [8] where the wires have been fabricated
by metal coating of a nanotube.

Let us use the above formula to estimate the expected
homogeneity of ES in realistic wires. We assume that
fabrication imperfections induce normally distributed fluc-
tuations of Gc in each weak link with standard deviation
�Gc. For �Gc ¼ 0, the total ES scales with the length.
However, if the fluctuations of E	

S are sufficiently large, the

total ES can be just dominated by a single weak link of the
lowest conductance. The criterion of crossover between

these two regimes is derived to be lnðL=lcÞ ¼
ð4:64 k�=R0�Þ2ð�Gc=GcÞ2. It sharply depends on R0�.
Let us assume �Gc=Gc ¼ 20%, a typical width variation
of ultranarrow wires. For the smallest experimental R0� in
Fig. 4, the homogeneity is only realized if L > 1017�! For
the largest R0�, L > 60� would suffice. The smallest pos-
sible �Gc is determined by mesoscopic fluctuations. For
the quantity given by Eq. (1), these fluctuations have been
computed in [21]. Substitution leads to the homogeneity
criterion lnðL=lcÞ ¼ ð1=8Þ lnðGc=GQÞ [19]. This criterion

is not restrictive for the values of R0� in Fig. 4.
We see that even for apparently homogeneous wires ES

may be strongly inhomogeneous. In addition, high values
of ES are hard to achieve for the wires under experimental
consideration. We suggest that fabrication of an artificial
weak link may solve the problem. To do so, one can try to
reduce selectively the wire width in a given point by, say, a
factor of 2, either by laser or ion beam.
In conclusion, we have studied the quantum phase slips

generated at a weak inhomogeneity in a superconducting
wire. We have shown that the phase-slip action can be
approximated by its topological part with accuracy better
than 6%, thereby establishing a correspondingly accurate
analytic estimate for the phase-slip amplitude. We have
analyzed the consequences of that estimation when applied
to realistic, imperfectly homogeneous wires. We suggest
the fabrication of an artificial weak link would provide a
better control needed for practical realization of the phase-
slip devices.
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