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The sequence of prominent fractional quantum Hall states up to � ¼ 5=11 around � ¼ 1=2 in a high-

mobility two-dimensional electron system confined at oxide heterointerface (ZnO) is analyzed in terms of

the composite fermion model. The temperature dependence of Rxx oscillations around � ¼ 1=2 yields an

estimation of the composite fermion effective mass, which increases linearly with the magnetic field. This

mass is of similar value to an enhanced electron effective mass, which in itself arises from strong electron

interaction. The energy gaps of fractional states and the temperature dependence of Rxx at � ¼ 1=2 point

to large residual interactions between composite fermions.
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The emerging field of oxide heterostructures revealed
exceptional physical characteristics at the interface be-
tween two oxide band insulators [1,2], including super-
conductivity [3], the quantum Hall effect [2,4], magnetism
[5], metal-insulator [6] and insulator-superconductor [3,6]
transitions. Essential to this field’s evolution has been the
material SrTiO3 and its derived heterostructures, which
has recently displayed an electron mobility exceeding
100 000 cm2=Vs [7]. However, in recent years, the
MgZnO=ZnO heterostructure has emerged as an outstand-
ing material for two-dimensional (2D) high-mobility elec-
tron system in this new realm of materials science, where
steady improvements in growth technique have realized
mobilities as high as 800 000 cm2=Vs [2,4,8]. In such a
clean 2D system, the Coulomb interaction can dominate
the physics in magnetic fields [9–11]. In low fields, inter-
acting charge carriers can be treated within the Fermi
liquid theory as noninteracting quasiparticles with renor-
malized effective mass and Landé g factor [12]. The inter-
action strength is characterized by the Wigner-Seitz radius

(rs) defined as a ratio of Coulomb energy (/ e2

�

ffiffiffi

n
p

) to

kinetic energy (/ n
mb

), where n is the charge carrier density,

mb the band mass, and � the dielectric constant of the
hosting material. In a high magnetic field B, the kinetic
energy of charge carriers is quenched, where the Coulomb

interaction ( e2

�lB
) on the magnetic length scale lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

@=eB
p

leads to the fractional quantum Hall effect (FQHE). This
sequence of FQHE is described by the composite fermion
(CF) picture, which maps the original system in a magnetic
field B to a fermion system in an effective magnetic field
Beff ¼ B� 2n�0 by attaching an even number of flux
quanta �0 to each electron [13]. At � ¼ 1=2 in particular,

the state is mapped to a CF system interacting with a
Chern-Simons gauge field with a zero Beff at a mean-field
level. Conversely, beyond the mean-field approximation,
density fluctuations of CFs cause the fluctuation of effec-
tive magnetic field, and this dictates the inter-CF interac-
tion, which is totally different from the original interaction
at B ¼ 0. The inter-CF interaction also determines the
renormalized mass mCF of a composite fermion [14].
The appearance of correlation effects, both in low and

high magnetic fields, depends on the material parameters.
Table I compares them for ZnO-based 2D electron system
(2DES) with the well-established GaAs and SrTiO3 sys-
tems and shows that both large rs and strong Coulomb
interaction in high magnetic fields distinguish ZnO from
other materials. Therefore, we anticipate the electron

TABLE I. Comparison of basic characteristics for 2D charge
carrier systems. Here, mb is the band mass, m0 the free electron
mass, � the dielectric constant, rs the Wigner-Seitz radius,
e2=�lB the Coulomb energy in Kelvin, @!c the cyclotron energy
in Kelvin, and � the Landau level mixing defined as the ratio of
e2=�lB to @!c. Magnetic field B is given in Tesla and the charge
carrier density n in units of 1011 cm�2.
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transport in this material to be strongly affected by the
Coulomb interaction in weak as well as strong magnetic
fields. Moreover, the electrons in ZnO occupy an isotropic
single pocket around � point in the Brillouin zone. This
removes the effect of mixing of heavy and light charge
carriers like in GaAs-based hole system and the effect of
anisotropic mass like in AlAs and SiGe systems. Thus the
novel oxide system is an appealing platform to study
many-body effects in low dimensional systems.

In this Letter, we study aspects of electron many-body
effects in ZnO heterostructures by investigating
temperature-dependent magnetotransport, both in low
magnetic fields and in the lowest Landau level, where a
sequence of FQH states � ¼ p

2p�1 with p up to 5 is ob-

served, due to the significant improvement of electron
mobility in the oxide structure [8]. This enables us to
draw the comparison between the electrons and the com-
posite fermions in ZnO structures.

Experiments are performed in three high-mobility
heterostructures with the largest mobility � up to
770 000 cm2=Vs for a charge carrier density n ¼ 1:4�
1011 cm�2. Differences between samples under study may
be attributed to slightly varied Mg doping in the
MgxZn1�xO=ZnO capping layer, as Falson et al., with
the details of MBE growth, have reported elsewhere [8].
The zero-field mobility and the charge carrier density
determined from Shubnikov–de Haas (SdH) oscillations
are listed in Table II. The Hall bars are processed by the
conventional optical lithography combined with Ar ion
milling to define the mesa and electron beam evaporation
of 20 nm Ti to form the Ohmic contacts. In the last
processing step, the structure is covered with 30 nm thick
amorphous Al2O3. The magnetotransport measurements
are performed in a 3He system in a magnetic field up to
14 Tapplied perpendicular to the 2DES plane. The 2DES is
excited with 100 nA dc current while measuring Rxx and
Rxy simultaneously as a function of magnetic field. Heating

effects caused by the excitation current were not
encountered.

Figure 1 shows the magnetotransport for the highest
mobility sample A in magnetic fields up to 14 T. The
high quality of the heterostructures is demonstrated by
the unambiguous observation of a series of fractional
quantum Hall states � in the lowest Landau level at 2=3,
3=5, 4=7, 5=9, approaching � ¼ 1=2 from below, and 4=9,

5=11 from above. The sample quality is further testified by
indications, from Rxx, of the formation of fractions down to
� ¼ 6=11 and 6=13. We start by analyzing the temperature
dependence of the amplitude �R of SdH oscillations in
low magnetic fields using the Dingle expression �R /
expð��=!c�qÞ�= sinhð�Þ, where �= sinhð�Þ with � ¼
2�2kBT=@!c describing the temperature induced damping
of SdH oscillations at cyclotron frequency !c ¼ eB=m.
Here, we consider only the fundamental Fourier compo-
nent of the magnetoresistance oscillation [15]. An example
of temperature dependence of SdH oscillations is depicted
for sample A in the inset of Fig. 1. The minima of SdH
oscillations correspond to odd filling factors, which is
consistent with previous reports, and are considered as
electron cyclotron gaps [16]. For each value (indicated
with a triangle) of the magnetic field, we analyzed
temperature dependence of lnð�R=TÞ to obtain an aver-
aged electron mass m � 0:47m0, where m0 is the free
electron mass. Such analysis is performed for all three
samples under study and the averaged electron masses
are listed in Table II. Despite slightly different rs values
for the samples, the electron mass enhancement is consis-
tently high (� 60%) above the band mass (0:29 m0) of
ZnO. Thus we conclude that the low-field mass enhance-
ment is pronounced from electron-electron interaction,
which saturates for such a large rs values. The mass
enhancement will lead to an enhancement of the Landau
level mixing in FQH regime. We assert our result by
confirming that the quantum scattering time �q, listed in

Table II, does not show a significant temperature depen-
dence. A large ratio of transport scattering time
�tr ð� 100 psÞ determined from the zero-field mobility to

TABLE II. Parameters for each sample: � is the electron
mobility in zero field, n the charge carrier density, rs the
Wigner-Seitz radius, m the electron mass, m0 the free electron
mass, and �q the quantum scattering time.

Sample �ðcm2=VsÞ nð1011 cm�2Þ rs m=m0 �qðpsÞ
A 770 000 1.5 9.5 0:46� 0:03 2.2

B 550 000 1.9 8.4 0:47� 0:03 3.1

C 460 000 1.8 8.7 0:47� 0:03 2.8

=7

R
xx

)
(

FIG. 1 (color online). Rxx and Rxy for sample A. In the lowest
Landau level, a series of fractional quantum Hall states is
observed. Temperature dependence of Rxx at high magnetic field
and in low field (inset) are shown. Triangles indicate the extrema
of Shubnikov–de Haas oscillations used to evaluate the electron
effective mass.
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�q supports additionally the framework of large electron-

electron scattering, and hence is consistent with the obser-
vation of an enhanced electron effective mass [17].

Now we come to the main question about the effective
mass in the FQHE regime. Treating the oscillations of Rxx

in the lowest Landau level as SdH oscillations of CF, we
consider the formation of a degenerated Fermi surface for
CF at Beff ¼ 0 and thus draw analogy between CF and
electrons. Hence we apply the same Dingle analysis as
described above to determine the CF effective mass from
the temperature dependence of the Rxx extrema in Fig. 1 in
magnetic field Beff (upper axis in Fig. 1). The other two
samples are analyzed in a similar manner and the summary
of the derived CF masses is given on the right-hand side of
Fig. 2 as a function of Beff . Unlike in most observations for
GaAs-based 2D systems, we do not observe the divergence
of mCF when approaching Beff ¼ 0, even though our data
are analyzed in the same Beff range [18]. However, the data
set of evaluated CF masses for three samples, when plotted
versus the bare magnetic field B, fall upon a linear mag-
netic field dependence as depicted in inset of Fig. 2. This B
dependence of CF mass departs from the result of a di-
mensional analysis based on the CF mean-field theory,

which predicts mCF / ffiffiffiffi

B
p

=� scaling [19]. Besides the dif-
ference in functional dependence of mCF on the magnetic
field, the CF mass in ZnO is also lower than the estimated
value mCF ¼ 0:9 m0, when considering both mCF scaling
with the dielectric constant � (see Table I) and mCF ¼
0:65 m0 for GaAs-based 2DES with comparable charge
carrier density [20]. However, the dimensional analysis
does not include the effect of Landau level mixing, which

is much larger in ZnO than in GaAs as displayed in Table I,
and the nonzero thickness of the wave function. Therefore,
to interpret our result, the impact of these two effects
on electron interaction in ZnO has to be taken into account
[21–23]. In addition, the mass of electrons as plotted on
the left-hand side of Fig. 2, is independent of the magnetic
field and is comparable with the CF mass. For comparison,
the ratio of CF mass to the electron mass in GaAs is
about 10.
Having identified the CF mass, we next evaluate the

energy gap as the CF cyclotron energy @!CF for the
identified fractional filling factors, and plot them in
Fig. 3 (open symbols in the upper panel) against Beff . At

� ¼ 2=3 the values of the cyclotron energies are 0:047 e2

�lB

and 0:042 e2

�lB
for sample A and B, respectively, which are

close to the activation energy of 0:1 e2

�lB
(0:08 e2

�lB
) for spin-

polarized (non-spin-polarized) state of an ideal system
[13]. The values of the so-obtained cyclotron energy are
larger than the energy gap� obtained from the temperature
dependence of Rxx minima in terms of Rxx / expð��=2TÞ.
Figure 3 plots � (filled symbols in the upper panel) versus
Beff . As expected, the energy gap of fractional states
decreases when Beff ¼ 0 is approached, and reflects the
tendency for the cyclotron energy @!CF dependence on
Beff . The difference � between the two energies, shown at
the bottom of Fig. 3, does not indicate any pronounced
dependence on the magnetic field. The difficulty to inter-
pret the behavior of �ðBeffÞ arises from several factors. The
heterostructures differ from each other by the Mg doping
level, and even though its variation is small between the
structures, the disordered potential landscape and the at-
tributed correction �disorder should be different for three
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FIG. 2 (color online). The effective mass of electrons in low
magnetic fields against B, and the effective mass of composite
fermions against Beff . The mass in low magnetic fields is
increased by about 60% with respect to the electron band mass
(horizontal line) in ZnO. The inset shows a linear dependence of
the composite fermion effective mass mCF on the applied mag-
netic field B. The linear fit goes through the origin.

FIG. 3 (color online). Comparison of the composite fermion
cyclotron energy @!CF evaluated from Fig. 2, and the energy gap
of quasiparticles � against Beff . The dashed lines serve as guides
to the eye. The open symbols in the negative-energy region
represent the difference � of energy gap � and cyclotron energy
@!CF.
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samples. A variation in Mg doping should also result in the
variation of the conduction band offset between MgZnO
and ZnO, which defines the 2DES confinement potential.
This will result in a different thickness of the 2DES wave
function in three heterostructures. However, it is difficult to
estimate the variation of the confinement potential and the
thickness of the wave function, given the current level of
understanding of the system, namely, a limited knowledge
about the conduction-band offset between ZnO and the low
level of Mg doping (roughly x ¼ 0:01) utilized to achieve
high-mobility heterostructures.

Finally, we compare the temperature dependence of Rxx

for electrons at B ¼ 0 and for composite fermions at
Beff ¼ 0. Figure 4 plots Rxx (filled symbols) for these
values of magnetic field against temperature. We immedi-
ately notice a vast difference between the two. It turns out
that we can fit the data with a phenomenological function,

Rxx ¼ c1 þ c2T
2 þ c3 lnT þ c4

ðT=TBGÞ4
1þ ðT=TBGÞ3

; (1)

where c1 þ c2T
2 describes the scattering of a degenerated

Fermi system from crystal imperfections, while the loga-
rithmic correction accounts for the interaction between the
particles. The last term describes the phonon scattering in
2D systems with a characteristic Bloch-Grüneisen tem-
perature TBG ¼ 2kF@vs=kB, which is related both to the
sound velocity in the material vs and the Fermi wave
vector kF [24,25]. The so-chosen phenomenological func-
tion reproduces rather accurately the temperature depen-
dence at both magnetic fields, where a steeper drop of Rxx

at Beff ¼ 0 reflects a more efficient phonon scattering for
CFs than for electrons, while TBG � 2 K is the same for
both carrier types. This temperature corresponds to vs ¼
1400 m=s in sample A, which is in the right range for sound
velocity in ZnO and thus gives us a confidence in phe-
nomenological function [26]. However, for CFs, with a

ffiffiffi

2
p

-larger Fermi wave vector [19], TBG is expected to be
higher, when assuming a constant sound velocity vs.
More importantly, however, Eq. (1) reproduces the

upturn of Rxx for CF given by the logarithmic term. The
lnT may remind us of the weak localization effect, but this
is irrelevant, since c3 is orders of magnitude larger at
Beff ¼ 0 than at B ¼ 0. Rather, Rxx behavior at Beff ¼ 0
should suggest a large residual interaction between the
composite fermions [14]. The interaction, different from
the bare Coulomb at B ¼ 0, comes from fluctuations in the
Chern-Simons gauge field [19]. Then a marginal Fermi
liquid behavior becomes possible in the presence of
disorder, so we envisage lnT as arising from this kind of
inter-CF interaction.
To summarize, effects of the electron correlation have

been analyzed in high-mobility oxide (ZnO) heterostruc-
tures for both weak and strong magnetic field regimes. In
low magnetic fields, correlation manifests itself as a 60%
enhancement of the electron mass compared to ZnO band
mass. In high magnetic fields corresponding to filling
factors around � ¼ 1=2, the data extending to fractional
quantum Hall states � ¼ p

2p�1 with p up to 5 indicate that

the ratio of CF mass estimated from Rxx oscillations has a
similar value to the enhanced electron mass, which con-
trasts with much higher values in GaAs. Another contrast
to GaAs is that the CF mass in ZnO increases linearly with
the magnetic field and does not exhibit a divergence around
Beff ¼ 0. Finally, a comparison of the transport (Rxx) at
B ¼ 0 and at Beff ¼ 0 shows that the latter has a greater
lnT component, indicative of a strong residual interaction
between CFs. CFs are also affected by phonon scattering.
Forthcoming studies will describe an investigation of the

electron transport at lower temperatures and at high mag-
netic fields. This will give an insight into the effects of
Landau level mixing and of the thickness of the electron
wave function. Of particular interest is the electron trans-
port in high Landau levels, where the electron ground
state is believed to form charge density waves originating
from the competition between the electron correlation
effects governed by Wigner-Seitz radius and the magnetic
length [11].
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