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Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
(Received 15 June 2011; revised manuscript received 14 March 2012; published 1 May 2012)

Amodel for magnetoresistance in positionally disordered organic materials is presented and solved using

percolation theory. The model describes the effects of spin dynamics on hopping transport by considering

changes in the effective density of hopping sites, a key quantity determining the properties of percolative

transport. Faster spin-flip transitions open up ‘‘spin-blocked’’ pathways to become viable conduction

channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be

found analytically in several regimes, and agree with previous measurements, including the sensitive

dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping

time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems

with controllable positional disorder would provide an additional stringent test of this theory.
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Spintronics [1] in organic materials has generated con-
siderable interest in recent years [2] due to the long spin
lifetimes of organic semiconductors as well as the flexibil-
ity, low cost, and chemical tunability of organic devices
[3]. Spin transport properties are intimately connected to
the electrical transport properties [4], so although spin
transport through inorganic semiconductors has been
extensively explored [5,6], novel features should be ex-
pected in organics due to their very different electronic
transport properties. The understanding of spin transport in
organics has been challenged by the discovery of magnetic
field effects on properties such as conductivity and elec-
troluminescence [7–15], and characterized by magneto-
resistances of 10%–20% in magnetic fields as small as
10 mT. Several new models of organic magnetoresistance
(OMAR) have been proposed, many of which involve spin-
dependent processes emanating from hyperfine interac-
tions. These models can be broadly categorized by their
reliance on bipolaron [13] or electron-hole pair [9,10]
formation rates, and their dependence on the relative spin
of two carriers located at neighboring sites. However, no
model of OMAR has explicitly taken into account how the
presence of spin-blocked sites affects the theoretical de-
scription of hopping transport for a single carrier using
percolation theory [16,17].

This Letter provides a description of magnetoresistance
(MR) based on percolative hopping transport for position-
ally disordered organic semiconductors. The theory
proposed here maps the complex phenomena of spin-
dependent hopping onto a simple problem of r percolation
with an effective density of hopping-accessible sites that
depends on the magnetic field through spin relaxation. We
focus on unipolar charge transport since several analytic
results can be readily obtained; an extension to bipolar
transport can be done with similar techniques. Our
percolation-based theory allows us to explain the width
and saturation of measured MR curves [12,18,19], as well

as make predictions of MR in systems with low site con-
centration and high temperatures. This approach is supe-
rior to an analytic analysis of the resistance determined by
a single ‘‘bottleneck’’ pair of sites [20], because (1) our
theory is not limited to slow carrier hopping, (2) our analy-
sis does not require a very large electric field to force
hopping in a single direction, and (3) in our analysis
percolation theory, rather than a phenomenological branch-
ing parameter, determines the resistance for carriers to go
around the bottleneck pair if the bottleneck resistance
becomes too large. Finally, we propose additional experi-
ments that could test our theory and thereby shed light on
the operative mechanisms leading to OMAR. This
approach can be generalized to systems with both posi-
tional and energetic disorder, and similar MR results and
trends are expected, although analytic results may no
longer be possible. We note some of our results are repro-
duced by recent numerical simulations [21].
Model.—We model the spatially disordered organic

system as a network of random resistors in the spirit of
Miller and Abrahams [22]. The resistance between two

sites, i and j, is given by Rij ¼ R0e
2rij=a where rij is their

separation and a is the localization length of a carrier at a
site which we assume to be constant throughout the system.
The bulk resistance in such a random resistor network is
known from percolation theory [16,23,24]. The bulk re-
sistance is governed by a critical resistance (distance) Rc

(rc) which is the smallest resistance (or equivalently the
smallest separation) that still allows for an infinitely large
network of bonds. This percolation length is set by the
bonding criterion:

Bc ¼ 4�
Z rc

0
r2Ndr; (1)

where N is the density of sites in the system and Bc is a
number that determines how many bonds each site in the
percolating network must connect to on average; Bc � 2:7
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in three dimensions [16]. Energy disorder can be neglected
in transport calculations when the intersite separation is
large and temperatures are high; conductivity due to r
percolation has been observed in organic semiconductors
in this regime [25,26]. These conditions are assumed
throughout this Letter.

Spin affects electronic transport in hopping transport
through the Pauli exclusion principle, as shown schemati-
cally in Fig. 1; double occupation of carriers on a single
site is forbidden if their spins are parallel (P), but allowed if
they are antiparallel (AP) [13,27] (at the cost of a Coulomb
interaction energy U). A carrier with arbitrary spin is
restricted from hopping to an occupied site with P spin
but may hop to a site occupied by an AP spin just as it
would to an unoccupied site. Handling the effect of the
Coulomb interaction energy U in the r-percolation regime
requires some care. Including U > 0 provides a charge-
blocking effect that quenches spin-flip effects, because a
carrier cannot effectively hop from one singly occupied
state onto a second, creating a doubly occupied state. In the
more general situation of energy disorder this unphysical
charge-blocking effect is removed if the width of the
energy distribution of the hopping sites is larger than or
comparable to U (commonly the case). In this situation,
frequently a carrier can hop from one singly occupied state
to a second, because the energy of the two carriers on the
same lower-energy site is still lower than the energy of the
two carriers on two separate sites. Thus, theory for MR in
the variable range hopping regime, in which there is energy
disorder, suggests thatU > 0 produces larger MR [28] than
U ¼ 0. It is therefore the case that the more physical
regime for positional disorder is to take U ¼ 0 to avoid
an unphysical excessive charge-blocking effect, and
we make that assumption. The respective concentrations
of the three types of sites (parallel, antiparallel, and
unoccupied) are NP, NAP, and N0. We consider carrier

concentrations dilute enough to neglect hops to doubly
occupied sites.
Since carrier hopping to an occupied site with a P spin is

forbidden, the concentration of sites in Eq. (1) is effectively
reduced to N � NP. In the absence of spin flips we would
then write the bonding criterion as Bc ¼ 4�

Rrc
0 r2N0

effdr,
whereN0

eff ¼ N � NP. The spin flip of a carrier at a site can

be understood as a dynamical process that will cause the
relative spin orientation between two singly occupied sites
to change. Hence, the hopping dynamics between two
occupied sites is strongly dependent on spin flips. If the
total concentration of singly occupied sites is fixed at Ns,
then at any given time the average densities of P-spin and
AP-spin sites are Ns=2. Thus, as a carrier attempts a hop to
a singly occupied site, the probability of success will be
1=2, independent of spin effects. The density of sites for
these successful hops is NAP ¼ Ns=2. So as before, the
density of unrestricted hopping sites is N0

eff . The hopping

attempt is foiled when the singly occupied site is inhabited
by a parallel spin, which occurs at NP ¼ Ns=2 sites.
We assert that the spin-blocked path can be opened by

any process that alters the relative spin orientation between
the two sites. The probability for the blockade to be lifted
by the time the next hopping attempt takes place, �h, is p.
We thus modify the effective density of P sites to be
½1� p�NP. The resulting modification of the density of
sites that can be hopped to, Neff , accounts for the possibil-
ity of spin flips of spins located at singly occupied sites. We
write the bonding criterion as

Bc ¼ 4
3�a

3y3cðN � NPÞ þ 4�a3NP

Z yc

0
y2pdy; (2)

where yc ¼ rc=a is the dimensionless critical length which
dictates the threshold resistance Rc ¼ R0e

2yc ; �h ¼ v�1
0 e2y

is the hopping time. A quantity yc0 ¼ ð3Bc=4�a
3NÞ1=3 is

defined as the critical intersite spacing in the absence of all
spin effects. In general, yc cannot be isolated in Eq. (2) and
the resultant MR can only be obtained numerically; how-
ever, in the dilute carrier regime (NP � N), the MR obeys
the analytic expression

MR � 2
1

y2c1

NP

N

Z yc1

0
y2½pð0Þ � pðHÞ�dy; (3)

where yc1 ¼ yc0ð1� NP=NÞ�1=3 is the renormalized criti-

cal intersite spacing. The MR scales linearly with the
fraction of singly occupied sites.
Most of the results reported below are based on the form

of p that is appropriate if the spin flips in these organic
materials are caused by the hyperfine interaction (HI)
[9,13]; expressions and implications appropriate for spin
flips caused by the spin-orbit interaction are summarized
briefly at the end of this Letter. Figure 2 emphasizes the
main results of our theory. Panel (a) shows our calculations
of MR for three different organic semiconductors: the
small molecule trinitro-9-flourenone (TNF) which has

FIG. 1 (color online). Spin blocking in transport. Black sites,
with densityN0

eff , are accessible sites for a carrier spin starting on

the left and proceeding to hop to the right along a sequence of
nearest-neighbor sites. Top: Red (gray) sites are inaccessible due
to spin blocking (as described in main text). The path traversed
(blue line) has a longest hop, over a distance r0c, which deter-
mines the resistance. Bottom: When spin-flips are permitted,
some red (gray) sites become accessible and the total density of
accessible sites is Neff >N0

eff . The carrier’s path is dramatically

altered; the average intersite separation decreases, as does rc.
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electrons as carriers (blue middle line), the polymer de-
rivative of polyphenylene vinylene (PPV) (orange bottom
line) with hole carriers, and a generic material (black top
line) that possesses a smaller localization length (1 Å) than

the other two (1 �A< aTNF < aPPV as given in figure cap-
tion). This result suggests that organic materials with small
localization lengths yield the largest MR. As an increasing
bias voltage tends to increase the localization length, for
our theory the MR will decrease as the bias is increased.
Experimental observations of the bias dependence are
ambiguous, which may be due to the bias dependence of
the majority and minority current injection rates for a
bipolar organic device. Panel (b) compares our calculations
for slow hopping (main) and fast hopping (inset). The MR
width for slow hopping is set by the hyperfine fields,
whereas the width for fast hopping is set by the hopping
rate. These results are derived and discussed in the remain-
ing portion of this Letter.

Fast hopping.—When hopping is faster than the hyper-
fine precession frequency, the carrier spin experiences a
random field for the short duration of time that it resides at
a site. The spin-flip rate is identical to the well-known
spin relaxation rate from HI in the motional narrowing
regime [29]:

1

�s
¼ v2

v2
H þ ��2

h

1

�h
: (4)

vH and v are precession frequencies due to the external
field H and the in-plane internal hyperfine fields, of
strength h. The probability for the P-spin to flip at the

next hop is pð�sÞ ¼ 1� e��h=�s , which will permit a hop to
the target site. This is a condition met in part when the
density of sites is high. In this case, the probability for a

spin flip is pð�sÞ � �h=�s. The hyperfine fields are random
at each site so a correct description of the MR involves an
average over the Gaussian distribution of these fields. The
resulting MR response, for yc1 � 1, averaged over the

Gaussian distribution of hyperfine fields with width hI, is

hMRi ¼ 1

2

NP

N
v2
I �

2
c

�
1� 1

v2
H�

2
c

lnð1þ v2
H�

2
cÞ
�
; (5)

where �c is the hopping time at the critical radius and vI is
the precession frequency corresponding to the field hI. The
positive MR can be understood by considering the field
dependence of the relaxation mechanism; e.g., an increas-
ing field suppresses spin relaxation via HI which makes the
spin blockade more effective. The dependence of MR on
the magnetic field here is identical to an earlier calculation
for amorphous semiconductors performed in the fast
hopping limit [28].
Slow hopping.—The condition 1=vI � �h may not

always be suitable for organic systems since the mobilities
are low. As site separations increase, the carrier hopping
rate is reduced to 1=vI < �c. During the requisite waiting
time to hop, the carrier spin at i and target-site spin at j
experience the applied field and their respective hyperfine
fields hi and hj. Given two spins initially P aligned, the

different hyperfine fields at the two sites rotate the spins to
produce the possibility of AP alignment. We interpret this
as a spin flip at either site. The time-averaged probability
that the next hop is successful is pðHÞ ¼ pij þ pji where

pij is the probability for the carrier at site i to be opposite

its initial state while the carrier at site j remains in its initial
state [30,31]:

pij ¼ 1

2

h2i
h2i þH2

�
1� 1

2

h2j

h2j þH2

�
: (6)

The second term, pji is the reverse possibility. The MR,

from Eq. (3), is ascertained to be

MR � 1

3
yc1

NP

N

H4

ðh2i þH2Þðh2j þH2Þ (7)

prior to the average taken over the hyperfine field distribu-
tion. We note that the MR is independent of the hopping
rate, which contrasts starkly with the fast hopping case.
MR line shape.—Two characteristic features to quantify

MR are its value at high magnetic fields, MRsat:, and its
width �, which we define as the half-width at half-
maximum. Figure 3 shows that a crossover from slow to
fast hopping exists for both the saturated MR and MR
width. Slow hopping, which for instance could result
from large intersite distances, is conducive to large values
of MR. The formula for MRsat: in the low site density
regime, derived from Eq. (7), is

MR sat: � 1

3
yc0

NP

N
: (8)
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3 Å
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FIG. 2 (color online). (a) Calculated MR %, using the hyper-
fine averaged version of Eq. (7) for a polymer PPV derivative
(orange bottom line) with localization length a ¼ 3 �A [39], the
small molecule TNF (blue middle line) with localization length
a ¼ 1:8 �A [25], and a generic organic material (top black line)
with localization length a ¼ 1 �A. The total site density is N ¼
1026 m�3 and the singly occupied site density is NP ¼
1025 m�3. (b) Calculated normalized MR, as in (a), at three
different hyperfine field distribution widths (hI). The middle
curve (red line) is for 2 mT. Inset: Normalized MR, using Eq.
(5), for generic organic material at total site densities corre-
sponding to �c � 0:5 ns (green dashed line), �c � 0:1 ns (red
dotted line), �c � 0:05 ns (black solid line). Only HI is assumed;
unless noted otherwise, all figures use hI ¼ 1 mT and v0 ¼
1012 s�1.
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Remarkably, the saturated MR is independent of HI. We
note that in the deuterated PPVexperiments of Ref. [18], �
of the magnetoluminesence decreased when the hyperfine
field was reduced whereas the high field magnetolumine-
sence was nearly unchanged. This result is consistent with
our theory. In the fast hopping limit, the site concentration
dependence is even stronger since MRsat: contains an ex-
ponential dependence on N through �c. The MR widths
also take on very different behaviors which are discerned
from their MR expressions above [Eqs. (5) and (7)]. In the
fast hopping region, the width is independent of the hyper-
fine interaction but strongly dependent on the hopping rate.
Note that the width for fast hopping is larger—this is due to
the quicker hopping rate which results in greater fields
being required to suppress HI spin relaxation. MR widths
as large as 40 mT—much greater than the hyperfine fields
present—have been measured [12,19]; our theory suggests
these large widths are related to the hopping rate and not
the hyperfine field. Often it has been assumed [18,20,32]
that � must depend on hI. We find that this is only true
in the slow hopping case. We also note that a similar
dependence of line shape width on hopping was seen in
recent numerical simulations [21].

The MR we calculate for fast and slow hopping are fit
well [33] by Lorenztian functions but not by an alternate,
proposed non-Lorentzian function [34]. Both forms have
been experimentally observed [34]. A fit to Gomez’s hole-
only data [19], where the MR width is over 25 mT, yields a
value of �c ¼ 0:2 ns which is consistent with the regime
where �c is much smaller than the hyperfine period (here
�6 ns).

Spin-orbit coupling effects.—For fast hopping, our the-
ory is quite general in that any spin relaxation mechanism
can be included for �s. Here we consider the influence of
spin-orbit coupling (SOC); a recent calculation of SOC in
several organic solids suggests that SOCmay be significant
[35]. Additionally, SOC manifests itself by producing

inhomogeneous g-factors (IG). The result of SOC produces
a spin relaxation rate: ��1

s ¼½b2v2
Hðv2

Hþ��2
h Þ�1þ�2���1

h ,

where � determines the SOC strength, b ¼ ffiffiffiffiffiffiffiffiffiffiffi
3=10

p
�g, and

�g is known to be proportional to � [29]. The field-

independent portion reduces the total MR by e��2
but

leads to no other qualitative change. This result is expected
since SOC is field-independent and has been observed
in Alq3 doped with Iridium [9]. IG, which increases

with an increasing field, leads to negative MR: � 1
2 �

NP

N b2 lnð1þ v2
H�

2
cÞ, where ðvI þ vHÞ�c � 1. At low

fields, this effect is expected to be small compared to
HI-induced MR. Recently, IG was studied in the slow
hopping regime [36] but �g was found to be unrealistically
high to explain the magnetic field effects [15].
The prediction of large MR in the slow hopping regime

necessitates measurements over a controlled and wide
range of site concentrations. For our r-percolation theory
to be valid, the unipolar organic device must possess a low
density of molecular sites and this density must be control-
lable. Conduction via r percolation was identified in TNF
films by measuring the electron mobility through time-of-
flight experiments [25,26]. The molecular density of TNF
could be carefully controlled by dispersing TNF in a
polyester host that did not alter the transport properties.
We suggest similar experiments to look for the magneto-
resistive dependences on the hopping rate described in this
Letter. We conclude by noting that this theory has impli-
cations for MR effects in amorphous semiconductors [29]
and colloidal quantum dots [37], as well as for spin diffu-
sion in organic spin valves [38].
This work was supported by an ARO MURI. We ac-

knowledge discussions with M. Wohlgenannt and P. A.
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