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In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole)

s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in

the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping

magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field

expands the electron (hole) wave functions with positive magnetic quantum numbers, m> 0, and shrinks

the states with negative m in a wide region outside the point defect. This together with a magnetic-field

dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is

linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-

field magnetoresistance in disordered �-conjugated organic materials.

DOI: 10.1103/PhysRevLett.108.186601 PACS numbers: 72.20.Ee, 72.20.My, 72.80.Le, 73.61.Ph

As is well known the magnetoresistance (MR) in the
hopping regime is caused by a strongmagnetic-field depen-
dence of the exponential asymptotic of the bound statewave
function at a remote distance from a donor (or an acceptor)
[1]. In the case of the Coulomb potential, when the wave
function is spherically symmetric in the absence of the
magnetic field, it becomes cigar-shaped squeezed in the
transverse direction to the field [1,2]. This leads to a sig-
nificant decrease in the overlap of thewave-function tails of
two neighboring donors, and hence to a significant increase
of resistivity (positive MR). An exponential positive MR in
sufficiently strong magnetic fields is used to be a hallmark
of the hopping conduction. On the other hand, there is
anomalous (negative) MR observed in some hopping sys-
tems, for instance in amorphous germanium and silicon. It
has been attributed to magnetic-field dependence of spin-
flip transitions between sites when some fraction of them
has a frozen spin [3], and/or to an increase of the density of
localized states due to the Zeeman energy shift, �BB [4].
This negative MR is used to be small (much less than 1%)
even in relatively high magnetic fields of about 1 Tesla.

In inorganic and organic insulators, lattice defects such
as vacancies, interstitials, excess atoms or ions, and other
‘‘impurity’’ centers quite often localize carriers with a
finite momentum rather than in the zero-momentum s
states. A simple example of such centers is the transition-
metal impurities in semiconductors studied in great detail
in the 1980s, when the growth methods produced ultra-
dilute samples [5]. In particular, a number of intriguing
physical phenomena were revealed due to localized 3d
impurity states. Importantly increasing concentrations of
magnetic ions in semiconductors, such as GaAs:Mn leads
to superpara and ferro-magnetism. The formation of a

substitutional 3d impurity can be thought of as a two-
step process, involving first the removal of a host Ga
atom, and second, the placement of a 3d impurity atom
in its place. The combined impurity or host orbitals simply
result from coupling between the host-crystal cation va-
cancy state and the impurity orbital of the 3d atom filling
this vacancy. Also the conventional nonmagnetic donors
and acceptors have nonzero orbital momentum states along
with s states, which are accessible for the hopping
conduction.
Here we develop the theory of hopping magnetoresis-

tance via non-zero-momentum orbitals. Quite remarkably
this renders a giant weak-field magnetoresistance, which is
negative. Moreover, if the orbital degeneracy is lifted due
to a broken time-reversal symmetry with or without net
magnetization, the negative MR is linear in B.
The Schrödinger equation for the impurity-localized

carrier wave function c ðrÞ can be written in the integral
form using the Green function (GF), Gðr; r0;EÞ, of the
Bloch electron in a magnetic field,

c ðrÞ ¼ �
Z

drGðr; r0;EÞVimpðr0Þc ðr0Þ; (1)

where E is the energy and VimpðrÞ is the impurity potential.

We consider first a two-dimensional (2D) system, such as a

thin film in the magnetic field, ~B perpendicular to the
surface of the film. Generally GF is expressed as a sum
over wave functions of the 2D Bloch electron in a rational
or irrational magnetic field with the Hofstadter’s butterfly
eigenvalues [6]. In a weak magnetic field with @!c ¼
@eB=mb much smaller than the bandwidth, the effective
band mass (mb) approximation is sufficient, so that one can
use the 2D free-electron GF in the magnetic field [7]
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G2Dð ~�; ~�0;EÞ ¼ mb

2�@2
exp

�
i
��0 sinð�0 ��Þ

2l2

�

� e�ð ~�� ~�0Þ2=4l2�ðaÞU½a; 1; ð ~�
� ~�0Þ2=2l2�; (2)

where � and �0 are azimuth angles of ~� and ~�0, respec-
tively, l ¼ ð@=eBÞ1=2 is the magnetic length, �ðaÞ is the
gamma function, and Uða; b; zÞ is the Tricomi’s confluent
hypergeometric function well behaved at infinity, z ! 1,
for negative E [8]. Here a ¼ 1=2� ðE��BBÞ=@!c,
where � corresponds to spin up/down, respectively.
Using Eqs. (1) and (2) one finds the wave function, c ðrÞ ¼
Fmð�Þ expðim�Þ, at r0 � � � l2=r0 as

Fmð�; bÞ / �jmje�ð��Þ2b=8�ðaÞU½a; 1; ð��Þ2b=4�; (3)

where r0 is the radius of the impurity potential, � ¼
ð2mb�0Þ1=2=@ is the inverse localization length of the
zero-field state with the ionization energy �0, b ¼ B=B0

is the reduced magnetic field with B0 ¼ @�2=2e, and �

is the distance from the impurity. While Fmð�Þ /
�jmjGð�; 0;EÞ is strictly applied to any finite-range
Vimpð�Þ, it works for the infinite-range Coulomb potential

at large distances as well [1]. Neglecting a small diamag-
netic correction (quadratic in b � 1) yields E ¼ ��0 þ
@!cm=2��BB wherem ¼ 0;�1;�2; . . . is the magnetic
quantum number of the localized state, so that

a ¼ 1

b
þ 1�m

2
: (4)

To elucidate the magnetic-field dependence of the bound
state, we expand the solution, Eq. (3), in powers of b
making use of the integral representation of Uða; b; zÞ [8],

Uða; 1; zÞ ¼ �ðaÞ�1
Z 1

0
e�zt ta�1

ð1þ tÞa dt: (5)

Replacing t with x ¼ t=a and ð1þ axÞa with ðaxÞa �
exp½1=x� 1=ð2ax2Þ þ 1=ð3a2x3Þ � . . .� yields
Fmð�; bÞ
�jmj / 2K0ð��Þ þ bðm� 1Þ��

2
K1ð��Þ

þ b
ð��Þ2
4

½K2ð��Þ � K0ð��Þ� þOðb2Þ; (6)

where KnðxÞ is the modified Bessel function. Equation (6)
is applicable in weak magnetic fields, b � 1 far enough
but not too far from the point defect (�� & 1=b). In a wide
region 1 � �� & 1=b one can use the asymptotic [8] of

KnðxÞ � ð�=2xÞ1=2 expð�xÞ½1þ ð4n2 � 1Þ=8z� to get a
leading magnetic-field correction to the wave function,

Fmð�; bÞ � Fmð�; 0Þ
Fmð�; 0Þ

¼ mb
��

2
: (7)

Remarkably, the correction is linear in B for any nonzero
m and could be large, if the bound state is sufficiently
shallow and/or the hopping distance is large enough. It is
positive for positive m and negative for negative m. The
unusual expansion of the wave function with the positivem
originates in the linear lowering of the ionization energy
due to the orbital magnetic moment in weak magnetic
fields. On the contrary, the states with negative m shrink
because their ionization energy increases with the mag-
netic filed. As shown below the state expansion or shrink-
ing in the region �� & 1=b causes a linearMR in the weak
magnetic field, which is negative or positive depending on
the particular orbitals involved in the hopping.
In the case of a finite-range impurity potential, Vi;j,

the standard expression for the hopping integral [1], tij ¼
hi j Vj j ji � hi j jihi j Vj j ii, yields tij / Fmð�Þ, where �

is the distance between two hopping sites i and j, which is
assumed to be much larger than the localization length.
The hopping conductance is proportional to the hopping
integral squared. Hence, the magnetoresistance to the hop-
ping transport via particular m orbitals is found as

MR m � RðBÞ � Rð0Þ
Rð0Þ ¼ qK0ð��Þ2

pFmð�; bÞ2
� 1; (8)

wherep¼R1
0 dxx

2mþ1K0ðxÞ2 and q¼
R1
0 dxx

2mþ1Fmðx;bÞ2
accounts for some weak-field dependence of the norm of
the wave function. The same expression is also applied
when hops take place between deep donor (acceptor) levels
and shallow levels with the emission or absorption of
phonons, as in the resistor network model of Ref. [9].
Here and below we take � as an average distance be-

tween defects. Figure 1 represents hopping MR in the
d-wave orbital state with m ¼ 2 as a function of the
reduced magnetic field for a few distances between defects.

FIG. 1 (color online). Hopping magnetoresistance in m ¼ 2
channel as a function of the reduced magnetic field B=B0 for a
few hopping distances.

PRL 108, 186601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
4 MAY 2012

186601-2



As one can see from the figure, the anomalous expansion of
the bound state results in the negative MR in weak mag-
netic fields, b & ð��Þ�1, followed by the positive MR in
stronger fields. The absolute value of the negative MR
could be in excess of 50%. The negative (for m> 0)
and positive (for m< 0) MRs are linear in B at relatively
low B.

Let us now extend the theory to a 3D system. To
incorporate the free motion in the z direction, one can
replace E with E� p2

z=2mb and perform the Fourier

transformation in Eq. (2), G3Dðr; r0;EÞ ¼ ð1=2�@Þ�R1
�1 dpze

ipzðz0�zÞG2Dð ~�; ~�0;E� p2
z=2mbÞ. Replacing t in

the integral representation of the confluent hypergeometric
function, Eq. (5), with t ¼ 1=ðexpðxÞ � 1Þ and integrating
over pz one obtains

G3Dðr; 0;EÞ ¼ mb

ð2�Þ3=2@2l
Z 1

0
dx

emxffiffiffi
x

p
sinhðx=2Þ

� exp

�
�
�ð��Þ2b

8
þ x

b
þ ð�zÞ2b

4x

þ ð��Þ2b
4ðex � 1Þ

��
: (9)

Expanding the exponent in the square brackets in Eq. (9)
up to the third power in x and performing the integration
by the saddle-point method, we finally obtain the asymp-

totic of the 3D wave function, c ðr; bÞ / �jmjG3Dðr; 0;EÞ
at 1 � �r & 1=b as

c mðr; bÞ / c mðr; 0Þ �rb=2

sinhð�rb=2Þ exp
�
m�rb

2
� �3�2rb2

96

�

(10)

with r2 ¼ �2 þ z2. For the s-wave bound state withm ¼ 0
this is the textbook asymptotic [1,2] accounting for the
conventional positive MR quadratic in small B. On the
contrary, for orbitals with nonzero orbital momentum,
the wave function, Eq. (10), is linear in small B.

If there is no time-reversal symmetry breaking, the states
with the opposite direction of the orbital angular momen-
tum, m and �m, are degenerate, so that the linear term in
the conductivity, � ¼ �m þ ��m cancels,

�ðbÞ ¼ �ð0Þ
�

�rb=2

sinhð�rb=2Þ
�
2
coshðm�rbÞe��3�2rb2=48:

(11)

But even in this case the hopping conductivity, �ðbÞ, first
increases with the magnetic field (negative quadratic MR)
and only then decreases with B (positive quadratic MR), if
��2=r < 24m2 � 4. Because of a large numerical factor
(24), this negative quadratic MR dominates in the whole
region of realistic impurity densities for any nonzero m.
Ions that carry a magnetic moment break the time-reversal
symmetry and split m and �m states. Such zero-field
splitting gives preference to the hopping via orbitals with

a lower ionizsation energy (positive m) providing the
negative linear MR. In the extreme case of a ferromagnet
with a frozen magnetization, magnetoresistance to hopping
via nonzero momentum orbitals should be highly aniso-
tropic changing from linear and negative in the field
applied parallel to the magnetization to linear but positive
in the opposite field, if the splitting due to exchange field is
large enough compared with the temperature.
At high electric fields the conduction in organic and

inorganic insulators is often injection and/or ionization
limited where carriers tunnel from extended states to a
bound impurity level or visa versa under a potential barrier
shaped by the electric field [10]. The tunnelling ionization/
injection rate, W, can be described by a modified tunnel-
ling ionization formula [11] fitting the numerically calcu-
lated ionization rates of atoms and ions over a large region
of the electric field, F,

Wm / F�� exp

�
�Fi

F
� 	F

Fi

�
; (12)

where 	 and � are numerical constants, depending on a

particular ion, and Fi / j�0 � @!cm=2j3=2 is the character-
istic ionization electric field depending on the magnetic
filed in our case. Expanding Fi in powers of B yields

WmðF; bÞ � WðF; 0Þemb; (13)

where WðF; 0Þ / F�� expð�Fi0=F� 	F=Fi0Þ is the ion-

ization/injection rate without the magnetic field, Fi0/�3=20 ,

and b ¼ B=Bi0 is the reduced magnetic field with Bi0 ¼
4B0FFi0=3ðF2

i0 � 	F2Þ, which is a superlinear function of

the electric field. Like in the case of the hopping conduc-
tion the injection/ionization conduction is a linear function
of the weak magnetic field, resulting in the linear negative
MR, if the orbital degeneracy is lifted.
Finally, let us address puzzling experimental observa-

tions of negative and positive low-field MR in a number of
organic materials [12–14]. Organic magnetoresistance
(OMAR) reaches 10% at fields on the order of only
10 mT and can be either positive or negative, depending
on operating conditions. The Zeeman energy does not
account for the observed OMAR at ambient temperatures
since it is too small, �BB � 10 mK, at a field of 10 mT.
OMAR in hole-only devices [12,13] rules out exciton-
based mechanisms as an explanation. An alternative model
involving spin-dependent bipolaron formation in deep
potential wells has been proposed [13]. Nevertheless, the
origin of OMAR is still debated. Finding a convincing
explanation of OMAR is important for understanding the
basic transport mechanism of organic insulators, which are
used in molecular spintronics [15,16].
Here we propose a more general model describing vari-

ous classes of materials characterized by hopping transport
regime, which accounts also for OMAR. We suggest that
the hopping conductance could be a combination of hop-
pings via conventional s-wave centers and via nonzero
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angular momentum orbitals. There is experimental evi-
dence for paramagnetic centers and zero-field splitting in
polymers, in particular, in Alq3 [17]. More recently (super)
paramagnetic susceptibility and ferromagnetic nanoclus-
ters have been reported in Alq3 [18]. The conventional
hopping magnetoconductivity is described by the familiar
exponential law [1], �s ¼ �s0 exp½ð�B=BsÞ2�, where Bs

depends on the localization radius and the density of
s-wave centers, and �s0 is the zero-field conductivity
[see also Eq. (11) with m ¼ 0]. The conductivity via non-
zero angular momentum orbitals split in zero field is linear,
Eqs. (10) and (13), and Fig. 1, so one can approximate it as
�m ¼ �m0ð1þ B=BmÞ, where�m0 and Bm¼B0=ð2jmj��Þ
or Bm ¼ Bi0=jmj do not depend on the magnetic field. As a
result, the combined weak-field MR is described by the
following simple expression:

MR ¼ �B=Bm þ 
½1� expð�B2=B2
sÞ�

1þ B=Bm þ 
 expð�B2=B2
sÞ

; (14)

which can be readily compared with experimental data for
sufficiently weak magnetic fields, B & Bm (here 
 ¼
�s0=�m0). As one can see in Fig. 2, the theory describes
reasonably well the large negative OMAR measured at
room temperature in ITO=PEDOT=Alq3=Ca device at
the bias voltage 14 V (and other voltages in Fig. 11 of
Ref. [12]) using 
, Bs, Bm as fitting parameters in the
weak-field region, B & Bm. The low value of Bm points
to a dominating role of hoppings via defects with rather
shallow bound states (the binding energy on the order of a
few Kelvin) in this device. Some empirical laws [12], in
particular / �½B=ðBþ constantÞ�2, also gives accurate
agreement, so that the good fit might be coincidental.
However, as noticed in Ref. [12] simple fitting functions
can fit the data only if one stays away from the transition
region between negative and positive OMAR. Remarkably,
as illustrated in Fig. 3, simplified Eq. (14) accounts for the
cumbersome MR also in those organic structures, which

show the transition from negative to positive MR.
Compared with ITO=PEDOT=Alq3=Ca device, the ITO/
PEDOT/pentacene/Ca device in Fig. 14 of Ref. [12] has
deeper bound states, and much smaller relative contribu-
tion of the conventional hopping conductance. The
electric-field behavior of Bm and 
 are in agreement
with the injection/ionization conduction, Eq. (13) with a
positive �.
In conclusion, we developed the theory of hopping

magnetoconductivity via nonzero orbital momentum
states. The asymptotic 2D and 3D solutions of the
Schrödinger equation show unusual linear expansion/
shrinking of the bound state with positive/negative mag-
netic quantum numbers far away but not too far from the
point defect in the magnetic field. Our theory accounts for
an extraordinary negative OMAR and for the transition to a
more ordinary positive MR in disordered �-conjugated
organic materials. Negative MR in some inorganic semi-
conductors may be also reanalyzed in the framework of the
theory.
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