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In this Letter, we show that the classical SOð2; 1Þ symmetry of a harmonically trapped Fermi gas in two

dimensions is broken by quantum effects. The anomalous correction to the symmetry algebra is given by a

two-body operator that is well known as the contact. Taking into account this modification, we are able to

derive the virial theorem for the system and a universal relation for the pressure of a homogeneous gas.

The existence of an undamped breathing mode is associated with the classical symmetry. We provide an

estimate for the anomalous frequency shift of this oscillation at zero temperature and compare the result

with a recent experiment by [E. Vogt et al., Phys. Rev. Lett. 108, 070404 (2012)]. Discrepancies are

attributed to finite temperature effects.
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The symmetry of a classical theory can be broken in the
corresponding quantum theory. This is known as a quan-
tum anomaly. Probably the best-known example of an
anomaly is the conformal anomaly: While the classical
theory only contains dimensionless bare parameters, the
quantization process forces us to introduce a regulator
scale so that divergent terms are canceled. The bare quan-
tities and the regulator conspire in such a way that the
renormalized quantities are dimensionful. This startling
phenomenon is called dimensional transmutation. It is
ubiquitous in quantum field theory, examples include
QED, QCD, and the Gross-Neveu model.

A quantum anomaly occurs for a two-dimensional (2D)
gas of two fermion species as well. In this case the anomaly
breaks classical scale invariance, and is therefore referred
to as a scale or conformal anomaly. The Hamiltonian of the
system can be written as

H ¼
Z

d2x

�
c y

�
�r2

2m
c �ðxÞ þ �

m
c y

" c
y
# c #c "ðxÞ

�
: (1)

We can read off the engineering dimension of the fields and
the coupling [1]: The fermion fields c �ðxÞ (with � ¼"; # )
have a dimension of momentum whereas the bare coupling
constant � is dimensionless. Since we work with a local
Hamiltonian, the quantum field theory contains divergen-
ces which must be removed by a renormalization of �. This
is done in such a way that the leading-order term in the
effective range expansion of the quantum-mechanical
s-wave scattering phase shift is reproduced. Hence, the
Hamiltonian (1) is referred to as the zero-range model.
The renormalized dimensionful parameter is the bound
state energy Eb. With a hard momentum space cutoff �,
Eb is related to � and the regulator scale � by [2,3]

Eb ¼ � 4

ma22De
2�E

¼ ��2

m
e4�=�: (2)

We set @ � 1. a2D is the scattering length and �E is Euler’s
constant. As the cutoff diverges,� ! 1, the bare coupling
�ð�Þ ! �0 so that Eb is kept fixed.
Experimentally, a 2D Fermi gas can be created by trap-

ping an ultracold quantum gas in a geometry that tightly
confines the gas in one direction [4–6]. Such a system can
be described by the following effective Hamiltonian:

Hosc ¼ H þ
Z

d2x
m!2

0x
2

2
c y

�c �ðxÞ; (3)

where !0 is the azimuthal trapping frequency. Although
the trapping potential explicitly breaks scale invariance,
the system still exhibits a residual symmetry on the clas-
sical level [7]. The symmetry group is SOð2; 1Þ, the
Lorentz group in 2D. The generators of the corresponding
algebra are constructed from the generators of scale and
special conformal transformations,

D ¼
Z

d2xximjiðxÞ and C ¼
Z

d2x
mx2

2
c y

�c �ðxÞ;
(4)

as well as the Hamiltonian of the noninteracting system,
Eq. (1). ji ¼ �iðc y@ic � @ic

yc Þ=2m is the current op-
erator. We can express the Hamiltonian of the trapped
system (3) as a linear combination of two generators:
Hosc ¼ Hþ!2

0C. D, C, and H obey the commutation

relations [8,9]

½D;H� ¼ 2iH; ½D;C� ¼ �2iC; and ½H;C� ¼ �iD:

(5)

The commutators in Eq. (5) hold on the classical level,
where they are understood in terms of Poisson brackets
½A; B�PB � R

d2xð �A
�c �

�B
�c y

�
� �A

�c y
�

�B
�c �

Þ. There are quantum

corrections to those relations, and one of the main results of
this Letter is to derive the anomalous correction to the
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commutator [D;Hosc], Eq. (13). The operators L1=2 ¼
ðLþ � L�Þ=4, where L� ¼ ðH �!2

0C� i!0DÞ=!0, and

the Hamiltonian L3 ¼ Hosc=2!0 form the soð2; 1Þ algebra
½L1; L2� ¼ L3, ½L2; L3� ¼ �L1, and ½L3; L1� ¼ L2. This is
an example of a spectrum generating symmetry: Lþ and
L� are raising and lowering operators with commutators
½Hosc; L�� ¼ �2!0L� and ½Lþ; L�� ¼ �4Hosc=!0. If
L� acts on an eigenstate of the Hamiltonian Hosc with
energy E, we obtain an eigenstate with energy E� 2!0.
The excitations of the ground state were identified with
breathing modes [7]. The work in Ref. [7] has been gen-
eralized to the unitary Fermi gas in three dimensions for
which the symmetry persists on the quantum level [8–10].

Since the SOð2; 1Þ symmetry on the classical level is
used to predict the breathing mode spectrum, the quantum
anomaly should induce a shift in that spectrum.We provide
an estimate for this shift in the hydrodynamic regime at
zero temperature based on a recent Monte Carlo simulation
of the equation of state [11].

In this Letter, we show that quantum effects deform the
algebra (5), which breaks the symmetry. We find that this
anomaly is closely related to a two-body operator known as
the contact, which plays an important role in the descrip-
tion of various properties of an interacting Fermi gas. This
work provides a new interpretation of the contact in 2D.
The contact operator is defined as

I ¼
Z

ddx�2c y
" c

y
# c #c "ðxÞ; (6)

where d is the space dimension. As is well-known, the
matrix elements of I are finite [12]. They set the magnitude
of a class of exact relations that are referred to as universal
or Tan relations [13]. They include several thermodynamic
relations as well as the asymptotic form of various corre-
lators, such as the momentum distribution, structure fac-
tors, or radio-frequency transition rates. For a review, see
Ref. [14]. Universal relations for Fermi gases in 2D have
been derived in Refs. [15–19]. Although we consider a
fermionic theory in this Letter, all our results can be
extended to bosonic systems.

Quantum anomaly.—We start by deriving the form of the
quantum anomaly. We show that the commutator of D and
H receives an anomalous correction which is proportional
to the contact operator I. This operator is not an element of
the original soð2; 1Þ algebra: The algebra is deformed and
the symmetry is broken. The effect of a quantum anomaly
on a Bose gas at zero temperature has been studied pre-
viously in Refs. [20,21].

The change of the Hamiltonian under an infinitesimal
scale transformation is given by [D;Hosc]. We can simplify
this expression using the Euler equation

� im½jiðxÞ; Hosc� ¼ �@j�ij � xim!2
0c

y
�c �ðxÞ; (7)

where �ij is the stress tensor of the zero-range model,

�ijðxÞ ¼ 1

2m

�
@ic

y
�@jc �þ@jc

y
�@ic ��

�ij

2
r2ðc y

�c �Þ
�

þ�ij

�

m
c y

" c
y
# c #c "ðxÞ: (8)

This yields, after integrating by parts,

½D;Hosc� ¼ i
Z

ddx�iiðxÞ � 2i!2
0C

¼ 2iH � 2i!2
0Cþ i

ðd� 2Þ��1

m
I: (9)

If the last term on the right-hand side of Eq. (9) were zero,
the theory would obey the commutation relations listed in
Eq. (5). In the following, we demonstrate that this term
does not vanish and the trace of the stress tensor receives
an anomalous correction. We choose a renormalization
scheme in which ��1 diverges as 1=ðd� 2Þ which cancels
the prefactor in Eq. (9).
In order to determine the dependence of � on the regu-

lator, it is sufficient to calculate few-body matrix elements.
To this end, consider the scattering amplitude of two
particles of opposite spin in the center of mass frame.
The matrix element is obtained by summing a geometric
series of ‘‘ladder’’ diagrams (see, for example, Ref. [10]):

A ðEÞ ¼ ½m=��GE
oscð0; 0Þ��1: (10)

GE
oscðr0; rÞ is the bare propagator of a particle with energy E

and reduced mass m=2. It is given by [10]

GE
oscð0; 0Þ ¼ �

Z 1

0
dteðEþi0þÞt

�
m!0

4� sinh!0t

�
d=2

¼ �
�
m

4�

�
d=2ð2!0Þd=2�1

�ð1� d
2Þ�ð� E

2!0
þ d

4Þ
�ð� E

2!0
� d

4 þ 1Þ :

(11)

Equation (11) diverges for d ¼ 2. In order to extract the
divergent part, we analytically continue d ¼ 2� ". To
keep the coupling dimensionless, we introduce a dimen-
sionful scale in Eq. (1), which we identify with the inverse
scattering length: � ! a�"

2D�. This yields

a�"
2DG

E
oscð0; 0Þ ¼ m

4�

�
� 2

"
þ ln

m!0a
2
2De

�E

2�

þ c 0

�
� E

2!0

þ 1

2

��
: (12)

c 0 is the digamma function. We choose a modified mini-
mal subtraction scheme with ��1ð"Þ ¼ ð�2="� �E �
ln�Þ=4�. The poles of the scattering amplitude give the
equation for the two-particle spectrum [22]. This gives rise
to the relation

½D;Hosc� ¼ 2iH � 2i!2
0Cþ i

2�m
I; (13)
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or, equivalently, ½D;H� ¼ 2iH þ iI=2�m. The repeated
action of H and D on I generates two-particle operators
that contain additional derivatives. More generally, the
correction term can be written as i��@H=@�, where �� ¼
�2=2� is the beta function of the theory. The anomaly is
due to the renormalization of the contact interaction and
independent of the particular choice of the regulator.

Using an analytic result, the anomalous correction to a
‘‘hydrodynamic commutator’’ of a low-density Bose gas
was determined in Ref. [20]. We reproduce this case by
using the ‘‘adiabatic Tan relation’’ I ¼ 4�ma2D@H=@a2D
[16] in Eq. (13). (Note that �� ¼ �2=4� for bosons.)

We can repeat the analysis for an untrapped system.
Here, the system is not only SOð2; 1Þ but also scale invari-
ant and the deformation of the algebra indicates a scale
anomaly. Using the propagator of a homogeneous system,

GE
homð0; 0Þ ¼ �R1

0 dteðEþi0þÞtðm=4�tÞd=2, in Eq. (10),

we find

a�"
2DG

E
homð0; 0Þ ¼

m

4�

�
� 2

"
þ ln

mEa22De
�E

4�
� i�

�
: (14)

The choice for �ð"Þ remains unchanged. The trace of the
stress tensor becomesZ

ddx�ii ¼ 2Hþ 1

2�m
I: (15)

The conformal anomaly in the homogeneous case has been
discussed in detail, both in quantum field theory [23] and as
a quantum-mechanical toy model [2,24,25]. For the dis-
cussion of an enlarged model with an additional long-range
interaction, see Ref. [26].

Virial theorem and pressure relation.—Although the
soð2; 1Þ algebra is deformed, we can use the new commu-
tation relation (13) to derive one of the Tan relations, the
virial theorem. The virial theorem relates the ground state
energy E0 ¼ hHosci of a many-particle system to the trap-
ping energy !2

0hCi.
The thermal expectation value of an operator B

is defined as hBi ¼ trfexp½��ðHosc ���N�Þ�Bg=
trfexp½��ðHosc ���N�Þ�g, where �� is the chemical
potential for the two spin species. Since ½Hosc; N�� ¼ 0,
the thermal weight factor commutes withHosc and we have
h½Hosc;B�i ¼ 0. SettingB ¼ D we can express the ground
state energy in the trap as follows:

E0 ¼ hH þ!2
0Ci ¼ 2!2

0hCi �
1

4�m
hIi: (16)

This form of the virial theorem has been obtained before in
Refs. [15,18] using a different argument.

A second important thermodynamic Tan relation is the
pressure relation. It holds for a homogeneous system and
links the pressure P and the energy density E. The pressure
relation follows directly from the anomalous trace of the
stress tensor, Eq. (15), which can be related to the pressure
via 2PV ¼ R

d2xh�iiðxÞi. Combining this with Eq. (15)
gives the desired result:

P ¼ E þ I
4�m

; (17)

where E and I denote the energy and the contact density,
respectively. Equation (17) can also be derived as the virial
theorem of a gas trapped in a box, but boundary terms have
to be taken into account, so that h½D;H�i ¼ 2iPV [27].
Again, the contact term in Eq. (17) is a direct consequence
of the quantum anomaly. For a scale-invariant system, the
pressure relation takes the well-known form P ¼ E.
Breathing mode.—As outlined in the Introduction, the

SOð2; 1Þ symmetry implies the existence of hydrodynamic
breathing mode excitations, the energy levels of which are
spaced by 2!0. A shift in the mode frequency is a mani-
festation of the quantum anomaly. A hydrodynamic
description applies whenever the system is only slightly
perturbed from thermodynamic equilibrium, which is
maintained by frequent collisions of the atoms. In a
strongly interacting regime where lnkFa2D � 0 [3,11],
the scattering cross section and, thus, the collision rate is
large and we expect a hydrodynamic description to be
applicable. The effect of anomalies on the hydrodynamic
equations has been much discussed in relativistic hydro-
dynamics, cf., for example, Ref. [28].
For a scale-invariant system, dimensional analysis dic-

tates a quadratic dependence of the pressure on the density
n; P� n2. If we approximate the equation of state by a
polytrope, P� n�þ1, where � is the polytropic index, the
linearized hydrodynamic equations can be solved (cf., for
example, Ref. [29]). The frequency of the breathing mode
in 2D is given by !2=!2

0 ¼ 2�þ 2. We fit the numerical

results for the energy per particle E=N in Ref. [11] to
determine the polytropic index

� � n

P

@P

@n
� 1 ¼ �þ �0 þ �00=4

�þ �0=2
; (18)

where we parametrize E=N ¼ k2F
4m�ðlnkFa2DÞ with kF ¼ffiffiffiffiffiffiffiffiffi

2�n
p

and define �0 � @�
@ lnkFa2D

. In Eq. (18), the bound state

part of E=N does not contribute. The result of this calcu-
lation is shown in Fig. 1. The effect of the anomaly should
be significant as we enter the strongly interacting regime,
lnkFa2D � 0. In this limit, we predict a shift of the order of
10% of the classical value.
In a recent experiment by E. Vogt et al., the breathing

mode frequency has been measured at much higher tem-
perature, T=TF � 0:4 [30]. The authors do not observe a
significant shift from the classical value and obtain a result
that is roughly consistent with the mean field prediction.
This suggests that at finite temperature the effect of the
anomaly is washed out by thermal fluctuations. It would be
very interesting to determine the equation of state at finite
temperature to address this question further. (We checked
that the theoretical results in Fig. 1 are not significantly
distorted for a slightly anisotropic trap and that they are
robust under a variation of the numerical data in [11].) The
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experimental results in Ref. [30] have been addressed in
Refs. [31,32], in which the damping of collective modes is
analyzed using kinetic theory.

For large values of j lnkFa2Dj, the energy per particle can
be stated in closed analytical form. We can use this to
derive analytical expressions for the frequency shifts. In
the limit lnkFa2D � 0, the system forms a Bardeen-
Cooper-Schrieffer (BCS) superfluid and the frequency
shift is

�!

!0

¼ 1

4	2
� 


2	3
þOð	�4Þ; (19)

where 	 ¼ lnkFa2D and 
 ¼ 0:06� 0:02 has been deter-
mined in Ref. [11]. Equation (19) is indicated by the green
dotted line in Fig. 1. In the Bose-Einstein condensate
(BEC) limit, the system can be described as a gas of bosons
with an effective dimer scattering length ad � 0:55a2D
[11,33]. We obtain the anomalous frequency shift

�!

!0

¼ � 1

4	
þOð	�2 ln	2Þ; (20)

which is indicated by the red dashed line in Fig. 1.
Equation (20) holds for a Bose gas as well, where ad has

to be replaced by the 2D scattering length a2D. Following
the notation in Ref. [20], we relate a2D to the 3D scattering

length a3D via a22Dn ¼ �e�1=�=�e2�Eþ1, where � ¼
�e2�Eþ1ðC2DÞ2n~a2z , C2D � 1:47 and � ¼ a3D=

ffiffiffiffi
�

p
~az, and

~az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=m!z

p
is the harmonic oscillator length [3]. If we

assume � � minð1; 1=j ln�jÞ, the leading-order term in
Eq. (20) reproduces the result for the anomalous frequency
shift obtained by Olshanii et al., � � �!=2!0 ¼
a3D=4

ffiffiffiffi
�

p
~az [20].

It is instructive to compare the present analysis to the
Fermi gas in one and three dimensions (1D/3D). There, the

commutator relations between the dilatation operator and
free Hamiltonian are

1D: ½D;H� ¼ 2iH þ ia1D
2m

I (21)

and

3D: ½D;H� ¼ 2iH þ ia�1
3D

4�m
I: (22)

As for the 2D case, we can use the commutator relations to
derive the virial theorem and the pressure relation in 1D
[15,34] and in 3D [12,13,15]. Moreover, the symmetry is
broken explicitly at the finite scattering length, and there is
a parameter—the (inverse) scattering length a1D and a�1

3D—

that sets the strength of the breaking. For small parameter
values, we can treat the correction as a small perturbation.
This has been exploited to calculate the shift in hydro-
dynamic mode frequencies close to the unitary limit in
3D [35,36].
In conclusion, we studied the effect of quantum fluctua-

tions on the symmetry properties of a 2D Fermi gas in a
harmonic trap. We showed that there is a quantum anom-
aly, i.e., that the Pitaevskii-Rosch symmetry which exists
on a classical level is not a symmetry of the quantum
system. The anomaly manifests itself in a deformation of
the Lie algebra associated with the symmetry group. We
derived that the anomalous operator appearing in the com-
mutator relations is the contact operator and used this result
to present a field-theoretical derivation of two thermody-
namic Tan relations, the virial theorem and the pressure
relation. We extracted the anomalous frequency shift of the
breathing mode from Monte Carlo simulations at T ¼ 0
and compared the result to recent measurements of the
mode frequency at finite temperature. The findings of
this Letter underline the subtle role that is played by the
contact operator in the physics of interacting quantum
gases. We can interpret it as an anomalous operator that
is introduced by quantum fluctuations.
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