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Using an unbiased quantum Monte Carlo method, we obtain convincing evidence of the existence of a
checkerboard supersolid at a commensurate filling factor 1/2 (a commensurate supersolid) in the soft-core
Bose-Hubbard model with nearest-neighbor repulsions on a cubic lattice. In conventional cases,
supersolids are realized at incommensurate filling factors by a doped-defect-condensation mechanism,
where particles (holes) doped into a perfect crystal act as interstitials (vacancies) and delocalize in the
crystal order. However, in the model, a supersolid state is stabilized even at the commensurate filling
factor 1/2 without doping. By performing grand canonical simulations, we obtain a ground-state
phase diagram that suggests the existence of a supersolid at a commensurate filling. To obtain direct
evidence of the commensurate supersolid, we next perform simulations in canonical ensembles at a
particle density p = 1/2 and exclude the possibility of phase separation. From the obtained snapshots, we
discuss its microscopic structure and observe that interstitial-vacancy pairs are unbound in the crystal

order.
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Since the observation of a nonclassical rotational iner-
tia in solid *He by Kim and Chan [1,2], the possible
existence of a supersolid has been discussed intensively.
Regarding the possibility of a bulk supersolid in “He,
Prokof’ev and Svistunov pointed out that, in the
absence of symmetry between vacancies and interstitials,
a commensurate supersolid in continuous space has a
zero probability of being observed in nature [3]. Thus,
they suggested that another scenario should be consid-
ered to interpret the decrease in rotational moment of
inertia observed in solid *He. In contrast to the case of
continuous spaces, the presence of supersolid states in
lattice systems has been established by unbiased quantum
Monte Carlo simulations [4-14], particularly in the case
when particles are added to or removed from perfect
commensurate crystals. As a result of recent progress in
experiments on cold atoms and molecules, optical lattice
systems have become highly promising systems for real-
izing the supersolid state. In conventional cases, we can
call such a supersolid state an incommensurate supersolid
state, because it is realized by doping defects such
as interstitials or vacancies into perfect commensurate
crystals.

Although a commensurate supersolid in continuous
space has a zero probability of being found in nature, this
does not apply to systems with explicitly broken transla-
tional symmetry such as lattice systems [3]. Among the
optical lattice systems, one of the most promising candi-
dates for realizing a supersolid is a checkerboard-type
supersolid near filling factor 1/2, because it can be realized
only in the presence of appropriate nearest-neighbor re-
pulsions of soft-core bosons on a simple square or cubic
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lattice [7,11,14]. Therefore, it is an interesting question
whether such a checkerboard supersolid can be stabilized
even at the commensurate filling factor 1/2 in the absence
of doping. Regarding the soft-core Bose-Hubbard model
with nearest-neighbor repulsions, the mean-field analysis
[11] and the Gutzwiller variational method [15,16] pre-
dicted that a checkerboard supersolid is stabilized at the
commensurate filling factor (particle density) p = 1/2 in
addition to above and below p = 1/2. In contrast to these
studies, exact quantum Monte Carlo studies have found
evidence of a supersolid phase only above p = 1/2 in 1D
and 2D systems [7,8]. However, recent quantum
Monte Carlo studies have revealed that a supersolid phase
exists below p = 1/2 as well as above p = 1/2 in the case
of a 3D cubic lattice [11,14]. This is consistent with the
prediction by the mean-field analysis and the Gutzwiller
variational method, and also suggests the presence of a
supersolid phase at p = 1/2. To obtain direct evidence of a
supersolid existing at the commensurate density p = 1/2,
it is necessary to consider the canonical ensemble at p =
1/2 and exclude the possibility of a phase separation,
neither of which have been investigated previously. In
this Letter, using an unbiased quantum Monte Carlo
method, we show convincing evidence of a commensurate
supersolid existing in the above-mentioned 3D system.
The finite-temperature transition to a commensurate super-
solid is also investigated. Finally, we show snapshots of
the commensurate supersolid and discuss a microscopic
structure.

The model considered here is the soft-core Bose-
Hubbard model with nearest-neighbor repulsions on a
cubic lattice. The Hamiltonian is given by
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Here, b;r (b;) and n; are the bosonic creation (annihilation)
operator on site i and the particle number operator defined
as n; = b:rbi, respectively. Furthermore, ¢, u, U, and V
represent the hopping parameter, the chemical potential,
the on-site repulsion, and the nearest-neighbor repulsion,
respectively. The summation (i, j) is taken over all pairs of
nearest-neighbor sites. In our simulations, we treat N = L3
systems with the periodic boundary condition. To investi-
gate the above model, we performed unbiased quantum
Monte Carlo simulations based on a hybrid algorithm of a
worm algorithm [17-19] and an O(N) Monte Carlo method
[20]. This hybrid algorithm enables efficient simulation
even in the presence of off-site interactions between bosons.
We show the ground-state phase diagram of the model in
Fig. 1. In our simulations, we set the nearest-neighbor
repulsion as V/U = 1/z, where z = 6 is the coordination
number. For 0 = p < 1, we confirmed the presence of a
superfluid (SF) phase, a checkerboard (CB) solid phase at
p = 1/2, a Mott insulator (MI) phase at p = 1, and a
supersolid (SS) phase. The phase diagram is qualitatively
in agreement with previous results obtained by the mean-
field analysis [11] and the Gutzwiller variational method
[15,21]. Since the added particles on the checkerboard
solid are subjected to an almost flat potential on the
checkerboard-type background at V/U ~ 1/z, they can
gain high kinetic energy and delocalize without causing a
phase separation [11]. Consequently, a broad interstitial-

based SS phase appears above the CB solid phase.
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FIG. 1 (color online). Ground-state phase diagram of the soft-
core Bose-Hubbard model with nearest-neighbor repulsions on a
cubic lattice. Error bars are drawn, but most of them are much
smaller than the symbol size (here and in the following figures).
Lines are used to guide the eyes. The black points at /U = 0
and the black solid line separating p = 0 from SF are determined
analytically.

To determine the phase boundaries, we calculated the
particle density p = 1/NY. {n;), the superfluid stiffness
p, = (WT/(6Lt), and the structure factor S(k) =
1/N?Y,; ;e*"i(n;n;) — (n;)*). Here, W, k, and r;; are
the winding number vector in the path integral representa-
tion, the wave vector, and the relative position vector
between sites i and j, respectively. Furthermore, (- )
indicates the thermal expectation value. In Fig. 2(a), the
results are shown as functions of the chemical potential
w/U at (¢/U, V/U, T/t) = (0.05,1/z,0.3). Since the bro-
ken symmetries in CB and SF are not associated with each
other, it is expected that a first-order phase transition takes
place at the boundary between CB and SF. We estimated its
phase boundary from the position of the discontinuity of p,
ps, and S(m, 7, 7). As a simple but reasonable way to
determine the boundary between CB and SS, we calculated
the zero-momentum Green function and estimated the
energy gap for inducing the particle or hole excitation
[22]. In the same manner, the boundary of MI is also
obtained from the zero-momentum Green function. The
determination of the phase boundary between SS and SF
requires a more quantitative consideration. As shown in
Fig. 2(b), we estimated it from the intersection of the
Binder ratio g = 1/2[3 — (m*)/(m?*)*] for different system
sizes, where m = 1/NY n;e’*"i at k = (m, m, 7). In this
analysis, we assumed that the dynamical critical exponent
is equal to 1, and we fixed the temperature as 7/t o 1/L.
For t/U =< 0.03, we observed a discontinuity in the
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FIG. 2 (color online). (a) Physical quantities as functions of
the chemical potential at ¢/U = 0.05. (b) Determination of the
quantum critical point between SS and SF from the intersection
of the Binder ratios for different system sizes. (c) Physical
quantities as functions of the chemical potential at /U =
0.057. (d) Physical quantities as functions of the particle density
for the same parameter set as that in (c).
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quantities at the boundary between SS and SF. Therefore,
we determined the boundary from the position of the
discontinuity.

For t/U = 0.055, the SS phase covers the tip of the CB
lobe. This result suggests the possible existence of com-
mensurate supersolids, because we can expect that the
system with a fixed density p = 1/2 undergoes a phase
transition from the CB solid state not directly to the SF
state, but to the SS state as ¢ increases. This can also be
expected from w dependence of the measured quantities.
In Fig. 2(c), the physical quantities at (¢/U, V/U,T/t) =
(0.057,1/z,0.3) are shown as functions of the chemical
potential. As the chemical potential increases, the SF-to-SS
transition occurs at p < 1/2, and the particle density in-
creases to above p = 1/2. Since there is no insulating
phase in which the particle density has a plateau and the
superfluid stiffness vanishes, we expect that the SS phase
remains even at p = 1/2. To explain this in more detail, we
also show p, and S(m, 71, ) as functions of the particle
density p in Fig. 2(d). These results are obtained by mak-
ing bins for particle densities with a finite width and
categorizing each sample into the appropriate bin.
Although these results support the hypothesis that both
finite p; and S(ar, 7, ) survive at p = 1/2, we also have
to exclude the possibility of a phase separation at exactly
p = 1/2, to conclude the presence of a supersolid at the
commensurate filling factor 1/2.

To obtain direct evidence of the existence of a commen-
surate supersolid, we next perform simulations for p =
1/2. The following results were obtained by using only
samples with p that is exactly equal to 1/2. In other words,
we performed quantum Monte Carlo calculations in a
canonical ensemble at p = 1/2. In Fig. 3, the temperature
dependences of p, and S(, 7, ) are shown at
(t/U,V/U) = (0.057,1/z). We can confirm finite values
of p, and S(ar, 7, ) at low temperatures. In our simula-
tions, p, and S(ar, 77, ) for all replicas, which were simu-
lated under different initial conditions and with different
seeds of random number, converged to the same values.
This indicates the absence of a phase separation.

To clarify the existence of a finite-temperature transition
to the commensurate supersolid state, we performed finite-
size scaling analysis. Since the breaking symmetries in the
supersolid state are Z, and U(1), which are related to the
checkerboard order and the superfluidity, respectively, two
successive transitions of the Ising-type universality class
and the XY universality class are expected. We analyzed
the finite-size-scaling behavior of the structure factor and
the superfluid stiffness by considering the scaling forms
S(7r, ar, w)L'*" = f(8L'/") and p,L = g(8L'/"), respec-
tively. Here, 6 is defined as 6 = (T' — T.)/T,, and T is the
critical temperature. Using the critical exponents of the 3D
Ising universality class (v = 0.63002 and n = 0.03627
[23]) for the structure factor and the 3D XY universality
class (v = 0.67155 [24]) for the superfluid stiffness, we
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FIG. 3 (color online). (a) Finite-temperature transition to the
commensurate supersolid state. (b) Finite-size scaling of
S(7, 77, ) for the normal-to-CB transition. (c) Finite-size scal-
ing of p, for the CB-to-SS transition.

successfully observed data collapses. As shown in
Figs. 3(b) and 3(c), the data of system sizes larger than
L ~ 16 are necessary to obtain good scaling results. These
results of finite-size scaling also strongly indicate the
absence of a phase separation at p = 1/2. Therefore, we
conclude that a true commensurate checkerboard super-
solid exists in the present model. In Fig. 4, we summarize
the transition points in the finite-temperature phase dia-
gram at p = 1/2.

Finally, we discuss the microscopic structure of the
commensurate supersolid. As discussed in Ref. [3], in the

0.25 T T T

V/U=1/z, p=1/2
ol NL [U=1/z, p=1/2 ]

T/U

0.05

O 1 1 & 1
0.054 0.056 0.058 0.06 0.062

t/U

FIG. 4 (color online). Finite-temperature phase diagram at the
fixed density p = 1/2. Circles and squares denote the critical
temperatures for the checkerboard order and superfluidity, re-
spectively. The disordered phase at high temperatures is referred
to as normal liquid (NL).
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FIG. 5 (color online). Cross-sectional snapshots at a fixed z

coordinate and imaginary time in N =20° systems.
(a) Checkerboard solid state at (t/U,V/U,T/U) =
(0.052,1/7,0.02) and (b) commensurate supersolid state at
(t/U,V/U, T/U) = (0.056, 1/7,0.02). Particle filling is exactly
p = 1/2 in both cases, although this cannot be confirmed from a
single cross section above. Sites are denoted as squares. Empty
squares, blue squares, and red squares indicate empty sites,
singly occupied sites, and doubly occupied sites, respectively.
In (a), the green rectangular frame represents a bounded
interstitial-vacancy (particle-hole) pair confined within a
nearest-neighbor site. In (b), the existence of several doubly
occupied sites suggests the presence of interstitials and vacancies
that are unbound beyond the nearest-neighbor sites.

supersolid state, interstitials and vacancies do not form
bound pairs and can be found arbitrarily far from each
other. The delocalized defects give rise to superfluidity in
crystal orders. In contrast, in the insulating phases, locally
created particle-hole pairs are typically confined within
nearest-neighbor sites, as has been well discussed for the
Mott insulator at p = 1 [25]. To qualitatively confirm the
characteristic features, we show snapshots at the commen-
surate density p = 1/2 in Fig. 5. In the checkerboard
insulating phase [Fig. 5(a)], we observe bound
interstitial-vacancy pairs that are typically confined within
nearest-neighbor sites. In contrast, in the commensurate
supersolid state [Fig. 5(b)], we can easily observe intersti-
tials and vacancies that are separated by a distance exceed-
ing the nearest-neighbor distance. This can be confirmed
from the presence of doubly occupied sites because such
sites are never created from interstitial-vacancy pairs con-
fined within nearest-neighbor sites. Since we did not dope
any interstitials or vacancies into the commensurate solid,
the defects originated from the unbound interstitial-
vacancy pairs. In this sense, it is expected that the mecha-
nism of the CB-to-SS transition is similar to the released
doublon-holon mechanism of the MI-to-SF transition at
p =1[25].

In conclusion, using exact quantum Monte Carlo simu-
lations, we obtained direct evidence of the existence of a
checkerboard supersolid at p = 1/2 in 3D bosonic sys-
tems. By obtaining a finite-temperature phase diagram at
p = 1/2, we also showed the range of parameters in which
this supersolid exists, including its temperature. Finally,
from snapshots, we qualitatively discussed its microscopic
structure. Although the snapshots suggest the existence of
unbound interstitial-vacancy pairs in the commensurate

supersolid, further investigation is needed to confirm this
quantitatively.
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