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The electromagnetic radiation of a charge moving in an infinite 3D structure made of parallel wires is

considered. The periods of the structure are assumed to be small; therefore, it can be described by an

effective permittivity tensor. The charge velocity is perpendicular to the wires. Analytical and numerical

investigations are performed, and some unusual properties of the radiation are noted. It is shown that the

radiation propagates along the wires and concentrates near certain rays behind the charge. The wave field

does not vary with distance from the charge along these rays (if energy loss in the medium is negligible).

The prospects for the use of the structure under consideration for diagnostics of bunches are noted.
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Cherenkov radiation (CR) of charged particles is used
very widely, both for the generation of large electromag-
netic fields and for the detection of charged particles [1].
One of the defects of traditional techniques used for par-
ticle detection is that the radiation intensity essentially
decreases with distance from the charge. Overcoming
this defect seems impossible if we deal only with some
homogenous medium (unless we use special devices such
as lenses or mirrors to concentrate the radiation or wave-
guides to channel it). However, the properties of radiation
in the presence of dispersive and anisotropic media can be
very unusual [1–8]. Further, we will demonstrate that the
divergence of CR can be negligible if certain specific types
of material are used.

At the present time, special attention is being given to
so-called ‘‘metamaterials,’’ which are artificial periodic
structures with relatively small spacing. A metamaterial
can be considered as a medium that is characterized by an
effective permittivity and permeability. Metamaterials can
possess various properties that are not observed in tradi-
tional media. For example, they can behave similarly to a
left-handed medium (LHM). The radiation of moving
charges in the presence of an LHM has been investigated
intensively [3–6]. Other metamaterials are known as well;
however, the radiation of moving charges in them has
rarely been analyzed [4,7,8].

Here we consider the case in which the charge
moves through a volume boundless system of parallel
wires (Fig. 1). It is assumed that d � �, where d is a
structural period and � is a typical wavelength or a typical
distance of a field variation. (For simplicity, we assume
that the periods for two perpendicular directions are
identical, but this is not necessarily [9,10].) Different
approaches to the derivation of the effective (‘‘macro-
scopic’’) characteristics of this structure can be found in
the literature [9–13]. If the x axis is parallel to the
wires, the expression of the permittivity tensor has the
form
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where !2
p ¼ 2�c2d�2½lnðd=r0Þ � C��1. Here c is the

velocity of light in vacuum, r0 is the wire radius, !d is a
small constant that is responsible for energy losses (we
consider that!d � !p), and C is some constant. Note that

the value of this constant depends on the ratio d=r0. In the
literature, different estimations of C can be found; how-
ever, all of them yield values on the order of 1 [9–13]. It
should be stressed that the medium under consideration
possesses both a frequency dispersion and a spatial one, as
can be seen from (1).
We will now analyze the case in which the charge

velocity is perpendicular to the wires. In the opposite
case, in which the charge moves parallel to the wires,
radiation can be generated only if the wires are covered
with nonconducting coating and the properties of the ra-
diation are fundamentally different (this type of problem
was considered in [14] for the case in which the structure is
situated in a waveguide).
It is assumed that the point charge moves with a constant

velocity ~V ¼ V ~ez ¼ c�~ez. For this source, the current

density is ~j ¼ ~ezc�q�ðx; y; �Þ, where � ¼ z� c�t, and

its Fourier transform is ~j!; ~k¼ ~ezc�q�ð!�kzc�Þ=ð2�Þ3.
The electromagnetic field is determined from the Maxwell
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FIG. 1. Scheme of the structure.
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equations which should be supplemented the condition of
exponential decrease of the field with increase in distance

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(we take into account small energy losses).

The solution was found with the help of the Fourier trans-
formation technique. Note that the initial fourfold Fourier
integrals are reduced to threefold ones due to the Dirac
delta function �ð!� kzc�Þ. Omitting transformations, we
write here the exact result for the electric force in the limit
of negligible losses (!d ! þ0):

~E ¼ �iqð2�2c3�Þ�1
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where
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k2ox ¼ �!2c�2ð1� �2Þ��2 �!2
pc

�2 � k2y; (4a)

k2eix ¼ �!2c�2ð1� �2Þ��2 � k2y; (4b)

k2eax ¼ !2c�2: (4c)

Note that we should take into account that keax ¼ !=cþ
i0; i.e., the pole kx ¼ keax is situated above the integration
path, and the pole kx ¼ �keax is situated below it (this
result is obtained if we initially consider !d � 0 and take
the limit as this value approaches 0 in the final result only).
Expressions (4) also follow from the dispersion equations
for the three types of plane waves that can exist in the
medium under consideration [10]:

k2x þ k2y þ k2z ¼ !2=c2; (5a)

k2x þ k2y þ k2z ¼ ð!2 �!2
pÞ=c2; (5b)

k2x ¼ !2=c2: (5c)

Equations (5) correspond to an ordinary wave (5a), an
‘‘isotropic’’ extraordinary wave (5b), and an ‘‘anisotropic’’
extraordinary wave (5c). The wave vector module of an
ordinary wave or an isotropic extraordinary wave does not
depend on the wave vector direction. An anisotropic ex-
traordinary wave has a fixed projection kx but arbitrary
projections ky and kz. Taking into account that kz ¼ !=V

in our problem, one can see that Eqs. (5) give expressions
(4). From (4), we see that only an anisotropic extraordinary
wave is a propagating one in the situation under consid-
eration, while the two other types of waves are evanescent,
because kox and keix are imaginary. This fact is illustrated
geometrically in Fig. 2, where the perpendicular from A
intersects only planes kx ¼ �keax ¼ �!=c. Note that
the phase velocity of the anisotropic extraordinary wave

!=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2c�2 þ k2y þ k2z

q
is not greater than c, but the group

velocity is always equal to c and directed along the x axis.
Writing the integrals over kx in (2) as the sum of resi-

dues, we obtain double integrals. It is interesting that
the integral for Ex can be expressed exactly in the explicit
form [15]:
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where K�ð�Þ is a modified Hankel function, and � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Because of the modified Hankel function, this

component exponentially decreases with an increase in �
and � . Thus it is a part of a quasistatic field, and the wave
field (the field of the CR) does not contain it.
The behaviors of Ey and Ez are fundamentally different.

They both are cumbersome expressions that consist of the
contributions of poles �kox, �keix, and �keax. Two of
them are imaginary and produce contributions character-
ized by an exponential decrease (they pertain to the quasi-
static field). Only the contributions of poles�keax give the
wave field (henceforth denoted by index W):

�
EW
y

EW
z

�
¼ �q!2

p

2�c5�2

Z þ1

�1
d!

Z þ1

�1
dky

�
kyc�
!

�

� expð!c jxj þ i !
c� � þ ikyyÞ

ð !2

c2�2 þ k2yÞð !2

c2�2 þ k2y þ !2
p

c2
Þ
: (7)

The integrals over ky in these expressions can be deter-

mined by their residues, and then the integrals over ! are
analytically calculated using tabulated integrals [15]:

FIG. 2 (color online). Dispersive curves for three plane waves.
The small arrows show the group velocity direction for the
extraordinary anisotropic wave. The long arrows represent the
wave vector and its projections for the problem under consid-
eration (in units of !=c).
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where �2 ¼ y2 þ ð� þ �jxjÞ2.
One can make similar transformations for the magnetic

field components as well. The result is that the wave part of
the magnetic force is orthogonal to the electric one and of
equal modulo to it:

HW
z ¼ EW

y sgnx; HW
y ¼ �EW

z sgnx: (10)

Note that these formulas also follow from the properties of
a plane wave in the medium under consideration [10].

Using expansions of the modified Hankel functions, one
can find the approximate expressions for the field compo-
nents under the condition !p�=c � 1 (i.e., within some

small vicinity of the lines �þ�jxj¼0 in the plane y ¼ 0):

EW
y � ��q!2

p

c2
yð� þ �jxjÞ

�2
; (11)

EW
z � �q!2

p

2c2

�ð� þ �jxjÞ2
�2

þ ln
!p�

c
þ CE � 1

2

�
; (12)

where CE � 0:577 is the Euler constant.
One can see that components EW

y andHW
z tend to zero on

the lines � ¼ ��jxj, y ¼ 0, and components HW
y and EW

z

each have a logarithmic singularity on these lines. When

the viewpoint is shifted along these lines (i.e., conditions
y ¼ const and � þ �jxj ¼ const are fulfilled), the wave

field does not vary. The Poynting vector ~S ¼ cð4�Þ�1 �
½ ~E� ~H� consists only of a component that lies along the
wires, and it is proportional to the full electric wave field

squared. The energy flow through some square
R
�
~Sd ~� is

limited and does not depend on the distance from the
charge trajectory.
Note that the behavior of the wave field far from the lines

� ¼ ��jxj, y ¼ 0, under the condition !p�=c � 1, is

determined by the first summands in (8) and (9) because
of the exponential decrease of the modified Hankel func-
tions. One can see that the wave field decreases in this zone
proportionally to R�2 ¼ ðx2 þ y2 þ �2Þ�1.
Thus, a charge moving perpendicularly to the wires

emits CR concentrated within some small vicinity of the
lines � ¼ ��jxj in the plane y ¼ 0 behind the charge.
These waves propagate along the wires and exist for
an arbitrary velocity of the charge. Figure 3 shows the

FIG. 3 (color online). Electric wave field components of a
point charge as a function of � þ �jxj for y ¼ 0:001c=!p.

Distances are given in units of c=!p, and field intensity in units

of q!2
p=c

2.
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FIG. 4 (color online). ‘‘Snapshots’’ of EW
y (top), EW

z (middle),

and the absolute value of the Poynting vector ~SW (bottom) in the
case of a bunch with 	 ¼ 10c=!p at x ¼ const; the energy flow

density is given in units of q2!4
p=ð4�c3Þ, while the other units

are the same as in Fig. 3.
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behavior of the electric field components as a function of �
(note that the behavior as a function of y is similar).

We will now analyze the field of a bunch that has
negligible thickness but some finite length. We consider a
bunch with a homogeneous charge distribution along the
z axis, where the charge density has the form � ¼
q�ðxÞ�ðyÞ=ð2	Þ for j�j<	, and � ¼ 0 for j�j>	. The
electromagnetic field of the bunch moving perpendicular to
the wires has a convolution product that can be written in
the following form:

~Eð ~r; tÞ ¼ 1

2	

Z þ	

�	

~E�ðx; y; � � � 0; tÞd� 0; (13)

where ~E�ðx; y; �; tÞ is the field of the point charge obtained
above. We will now discuss some results of the computa-
tions of these integrals for the wave part of the field.

Figure 4 illustrates the intensities of the electric field
components and the magnitude of the Poynting vector on
the plane x ¼ const. Components EW

z and HW
y each have a

maximum at � ¼ ��jxj, y ¼ 0. They decrease with an
increase in jyj more slowly than with an increase in
j� þ �jxjj. The components EW

y and HW
z are equal to zero

at � ¼ ��jxj, y ¼ 0 and have extremes in all four quad-

rants. The behavior of the absolute value of ~SW is similar to
the behavior of EW

z because the latter is usually greater
than EW

y .

Figure 5 shows the behavior of electric wave field com-
ponents as a function of � þ �jxj for different values of y.
One can see that the field variation distance is much
more than the value of c=!p � d excluding some small

vicinities of lines � þ �jxj ¼ 	. This circumstance

justifies the use of continuous medium model for the
wire structure.
Figures 4 and 5 prove that the properties of the wave

field can be used for measurement of the length and
velocity of the particle bunch.
In conclusion, note the main properties of the Cherenkov

radiation in the problem under consideration. We have
shown that the radiation is nondivergent. It propagates
along the wires and has two components of electric force:
one is parallel to the charge velocity, and the other is
perpendicular to it and to the wires. The magnetic force
is orthogonal to the electric one and of equal modulo to it.
The radiation field does not depend on the distance from
the charge along certain rays behind the charge (if losses
are negligible). Computations of the wave fields of bunches
with finite length show that the structure under considera-
tion can be used for bunch diagnostics.
This research was supported by the Saint Petersburg

State University.
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