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We derive a fully quantum-mechanical equation of motion for a vortex in a 2-dimensional Bose

superfluid in the temperature regime where the normal fluid density �nðTÞ is small. The coupling between

the vortex ‘‘zero mode’’ and the quasiparticles has no term linear in the quasiparticle variables—the

lowest-order coupling is quadratic. We find that as a function of the dimensionless frequency ~� ¼
@�=kBT, the standard Hall-Vinen-Iordanskii equations are valid when ~� � 1 (the ‘‘classical regime’’),

but elsewhere, the equations of motion become highly retarded, with significant experimental implications

when ~� * 1.
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Quantum vortices were first predicted in 4He superfluid
by Onsager [1] and found experimentally a decade later [2].
Vortices, along with quasiparticles, constitute the two basic
excitations in many condensed matter systems [3]; they
may also have existed as topological defects in the early
universe [4].

Remarkably, the fundamental question of how vortices
and quasiparticles interact, and how vortices move is
very controversial, notably for superfluids [5–7]. The
argument is usually phrased in terms of forces acting
on a vortex moving with respect to both the superfluid
[having local velocity vsðrÞ and superfluid density �s]
and the normal fluid [with velocity vnðrÞ and density
�n]. Then, the classical equation of motion for the
semiclassical vortex coordinate RvðtÞ (here taken to be
a point in the plane—we discuss the 3D problem at the
end) is usually written [8] as

Mv
€Rv � fM � fqp � FacðtÞ ¼ 0; (1)

where FacðtÞ is some driving force, Mv is the vortex
mass, fM ¼ �s�� ð _Rv � vsÞ is the (uncontroversial)
Magnus force for a vortex with circulation � ¼ ẑh=m,
and the quasiparticle force is

fqp ¼ D0ðvn � _RvÞ þD0
0ẑ� ðvn � _RvÞ; (2)

where D0ðTÞ; D0
0ðTÞ depend strongly on the temperature

T. The classic discussion of Iordanskii [9] yields

D0
0ðTÞ ¼ ���nðTÞ: (3)

These ‘‘HVI equations,’’ due to Hall, Vinen, and
Iordanskii [8,9], have been used to analyze thousands
of experiments in superfluids and superconductors in the
last 60 years [10]. However, there is no consensus on the
value of either the mass Mv (estimates in the literature

range from zero to infinity [7]) or of the coefficients
D0ðTÞ; D0

0ðTÞ. Indeed, Thouless et al. [5] find D0
0ðTÞ ¼ 0

for all T, and scattering analyses give various results for
D0

0ðTÞ [6,9,11–13]. The resolution of these questions has

become an important unsolved problem in physics. We
briefly discuss the experimental situation below.
Previous analyses have been restricted to a local

(in space and time) description, derived from semiclas-
sical or perturbative calculations of quasiparticle scatter-
ing off a static vortex, with no vortex recoil [6,9,11–13].
This yields forces acting instantaneously on a quasiclass-
ical vortex coordinate RvðtÞ. There is no general agree-
ment between these calculations (which are rendered
difficult by the long-range vortex profile). Our tactic
has been to formulate the problem fully quantum me-
chanically, in terms of an equation of motion for the
vortex reduced density matrix ��ðR;R0; tÞ, which is ob-
tained by integrating out all quasiparticle degrees of
freedom. Here the vortex coordinate states jRi, jR0i
are defined by the position of the vortex node appearing
in the many-body wave function. We then define a
vortex ‘‘center of mass’’ coordinate Rv ¼ 1

2 ðRþR0Þ,
and a ‘‘quantum fluctuation coordinate’’ � ¼ R�R0.
Equations of motion are then found for these two quan-
tum variables, with the vortex recoil automatically in-
corporated. Remarkably, in thermal equilibrium we find
that the results largely depend on one key parameter, the

ratio ~� ¼ @�=kBT, where � is the characteristic fre-
quency of the vortex motion, and kBT is the thermal

energy of the quasiparticles. When ~� � 1 we are in a
‘‘classical regime,’’ where we find that the HVI equa-
tions (1)–(3) can be justified, with the addition of a
nontrivial fluctuation force on the right-hand side of

(1). However, when ~� � 1 we are in a quantum regime
which has seen little experimental exploration, and
where the vortex equations of motion are rather different.
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Two key features of the analysis [14] are as follows:
(i) The widespread assumption of a vortex-quasiparticle
coupling which is linear in the quasiparticle variables is not
correct. The vortex is a solitonic excitation of the same
field as the quasiparticle excitations. Linear couplings are
then forbidden: for the vortex to be a bona fide minimum
action solution to the equations of motion, the lowest-order
coupling has to be at least quadratic in all fluctuation
variables [15]. One then needs to find a ‘‘renormalized’’
coupling to new fluctuation variables that are correctly
orthogonalized to each other and to the vortex ‘‘zero
mode’’; this turns out to be very complicated [14]. The
renormalized coupling, which is singular at low momen-
tum transfer, is indeed quadratic in these new variables.
(ii) Integration over quasiparticle coordinates then pro-
duces time-retarded, long-range interactions between
different points on a vortex ‘‘worldline.’’ A nonperturba-
tive path integral treatment (required to deal with the
singular vortex-quasiparticle interaction) then yields extra
‘‘memory forces’’ in the equations of motion, which

become important in the quantum regime ~�> 1.
(i) Results.—At low temperatures, Bose liquids are

described by an effective Hamiltonian of the form [16]:

H ¼
Z

d2r

�
�

2m2
0

ð@r�Þ2 þ �½�;r��
�
; (4)

with density � ¼ �s þ �ðrÞ, density fluctuations �ðrÞ, an
energy functional �½�;r�� whose form depends on which
superfluid we study, and a superfluid phase �ðrÞ. This
Hamiltonian is restricted to length scales � a0 ¼
@=m0c0, to energies � m0c

2
0, and to velocities � c0, the

sound velocity, where c20 ¼ �sðd2�=d�2Þj�¼0.

We emphasize the limitations of this hydrodynamic
formulation. It is valid for both low-density Bose gases
and dense superfluids like 4He, provided kBT � m0c

2
o

(so that �n � �; in, e.g., 4He superfluid, this means
T & 0:7 K), and likewise for perturbations of frequency
� � m0c

2
0=@. With these restrictions it is valid for arbi-

trary ratios of the ‘‘crossover parameter’’ ~� ¼ @�=kBT.
However, it does not include interquasiparticle interac-
tions, which are very small in this low-T regime and
have no bearing on the form of the quasiparticle-vortex
interaction, but which are essential for the macroscopic
transport of energy and momentum [17]. Nor do we study
here the role of the boundaries—such geometric effects are
crucial in understanding the vortex mass [7], although they
hardly affect the vortex-quasiparticle interaction.

(a) Equations of Motion.—The results are more trans-
parent when Fourier transformed. Defining RvðtÞ ¼R1
0 d�Rvð�Þei�t, we write the equation of motion as

Rv
i ð�Þ ¼ Aijð�; nqÞFjð�Þ; (5)

where nq is the quasiparticle distribution over momentum

q, and the total ‘‘driving force’’

F ¼ Facð�Þ � qv�� Jð�Þ þ Fflucð�; nqÞ (6)

sums an external driving field, an internal local transverse
force f? ¼ �qv�� Jð�Þ, where J ¼ �svs þ �nvn is the
total current, and a fluctuation term Fflucð�; nqÞ. The 2� 2

‘‘admittance matrix’’ Aij ¼ Ak�ij þ A?
ij , where

Ak ¼ D�1½��2Mvð�; nqÞ þ i�Dkð�; nqÞ�;
A? ¼ D�1½�̂y���� �̂xj�jd?ð�; nqÞ�;

(7)

where �̂ are the usual Pauli matrices, and

D ð�; nqÞ ¼ ½�2Mv � i�Dk�2 � ½���� ij�jd?�2:
(8)

If we write Aij ¼ ��ij, then �ð�; TÞ is analogous to a

conductivity tensor, with Dkð�Þ playing the role of the

longitudinal resistivity.
The key difference between (5)–(8) and previous

results for this problem lies in the frequency dependence
of Dkð�; nqÞ, d?ð�; nqÞ, Mvð�; nqÞ, and in the correlator

�ijð�; nqÞ ¼ hFfluc
i ð�; nqÞFfluc

j ð��; nqÞi of the fluctua-

tion force Ffluc. Quite generally we find that when
the quasiparticles are in equilibrium at temperature T, the
‘‘viscous’’ terms [i.e., Dkð�; TÞ, d?ð�; TÞ, and �ijð�; TÞ]
in (5)–(8) take the form Qð�; TÞ ¼ fðTÞgð ~�Þ. The effec-
tive mass Mvð�; TÞ has a more complicated behavior.
(b) Quantum-Classical crossover.—Consider first

Dkð ~�; TÞ, shown in Fig. 1. Over the whole range of ~�

and T, Dkð ~�; TÞ ¼ D0ðTÞgDð ~�Þ, where D0ðTÞ is just the
coefficient in (2), and where gDð ~�Þ decreases smoothly

from gDð0Þ ¼ 1 in the classical limit to gDð ~� ! 1Þ ¼
1=16 in the quantum limit [18]. The fluctuation correlator

�ijð ~�; TÞ, shown in Fig. 2, is a little more complicated.

FIG. 1 (color online). The longitudinal damping coefficient
Dkð ~�; TÞ. Main figure: The dependence of Dkð ~�; TÞ on ~�,

normalized to its zero frequency value D0ðTÞ. Inset: The coef-
ficient D0ðTÞ, proportional to T4, plotted as a function of the
dimensionless temperature ð�0=@ÞkBT.
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Ordinarily, one expects the noise correlator in a quantum

Langevin equation to have the form �QLð ~�; TÞ �
fðTÞ ~�coth12

~�, i.e., a strictly increasing function of ~�.

However, Fig. 2(a) shows a quite different behavior: like

Dkð ~�; TÞ, the longitudinal correlator �iið ~�; TÞ decreases
smoothly with ~�, now with the limiting behavior

�iið ~�Þ
�k
0

!

8>>><
>>>:

1� 	ð3Þ
2	ð4Þ

~�
� �

ð ~� ! 0Þ
	ð5Þ
4	ð4Þ 1þ 5	ð6Þ

	ð5Þ
~��1

� �
ð ~� ! 1Þ;

(9)

where �k
0ðTÞ ¼ �iið ~� ¼ 0; TÞ ¼ AD0ðTÞ, with A ¼

kBT=Lz
 (a relationship coming from the fluctuation-
dissipation theorem). On the other hand, in both limits the
transverse part �ijk�ij of �ijð�; TÞ is zero; it rises to a

maximum value�0:2�k
0ðTÞ in the crossover regime ~�� 1.

A Fourier transform back to the time domain [see
Fig. 2(b)] reveals an initial � function in �iiðt� s; TÞ
[because �iið ~�; TÞ is everywhere finite and positive] fol-
lowed by a slow decay / ðt� sÞ�2. Similar behavior is
found for Dkðt� s; TÞ [14]. The transverse correlator rises

from zero at zero time, and decays more rapidly [like
ðt� sÞ�3] at long times.

The transverse function d?ð ~�; TÞ also shows a charac-
teristic crossover behavior—we do not elaborate here

because d?ð ~�; TÞ is always very small compared to

Dkð ~�; TÞ. Full details on all these functions are found in

the Supplemental Material [14].
Finally, consider the vortex inertial mass Mvð�; TÞ

appearing in (5)–(8). This is well-known to depend on
the sample geometry [7]; for a circular container of radius
R0 � a0, in the � ! 0 limit, we easily verify the
well-known hydrodynamic result [19]

Mvð0Þ ¼ 
�sa
2
0

�
ln

R0

ao

� �
þ �E þ 1=4

�
; (10)

where �E is Euler’s constant. Naively, one expects that in

the quantum limit ~� � 1, the lnðR0=a0Þ factor in (10) will
be replaced by lnðc0=a0�Þ (the length scale c0=a0 being
set by the distance quasiparticles can travel in a time
���1). However, the actual behavior is more subtle: there
is a ‘‘radiation reaction’’ term / d3Rv=dt

3 in the equation
of motion, analogous to that in electrodynamics, and to
deal with this one must go beyond the expansion in powers
of _Rv=c0 being used here. This problem lies outside the
scope of the present paper [20].
(c) Real-time dynamics.—Remarkably, the results given

above allow us to write simplified local equations of
motion in both quantum and classical limits. In the classi-
cal limit, Fourier transforming back gives precisely the
HVI equations (1)–(3), but with an added noise term:

Mv
€Rv � fM � fqp � FacðtÞ ¼ FðclÞ

flucðtÞ; (11)

where the classical noise force FðclÞ
flucðtÞ has the correlator

�ðclÞ
ij ðt� s; TÞ � �k

oðTÞ�ij�ðt� sÞ; (12)

i.e. an entirely longitudinal Markovian noise. However this
equation is only meaningful on coarse-grained time scales
� @=kBT; for shorter times, the time-retarded nature of the
correlations becomes crucial, and as Fig. 2 makes clear, the
fluctuation correlator �ijðt� s; TÞ then becomes aniso-

tropic and highly non-Markovian, and the HVI equations
simply do not apply.

In the opposite quantum limit ~� � 1, one may
again write a local equation like (11), of HVI form, again
with an added noisy fluctuating force. However, now
the coefficients are different; D0ðTÞ in (2) is replaced
by D0ðTÞ=16, and the quantum noise correlator

�ðQÞ
ij ðt� s; TÞ ¼ 	ð5Þ

4	ð4Þ�
ðclÞ
ij ðt� s; TÞ (again entirely longitu-

dinal). In this limit, valid for time scales � @=kBT
(but � @=m0c

2
0), the coefficients in these ‘‘quantum

HVI’’ equations arise solely from the �-function contribu-
tions to the correlation functions—all retarded parts are
suppressed.

FIG. 2 (color online). The correlator �ij of the fluctuating
force, plotted as a function of ~� (top) and the dimensionless
time kBTðt� sÞ=@ (bottom). The plots are normalized to �ii at
zero frequency (top) and at zero time (bottom). The arrow at
t� s ¼ 0 in the bottom figure represents a �-function contribu-
tion (see text).
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We would like to emphasize how unusual these results
are in detail. It is quite remarkable to have 2 equations of
exactly the same form (but quite different coefficients) in
these two limits, but with a quite different form in the
crossover between them; it is more illuminating to look
at it in frequency space, as above. And yet, very surpris-
ingly (at least to us), the Iordanskii force is quite unaffected
by this—apart from the very small correction term

d?ð ~�; TÞ, the Iordanskii force is independent of frequency,
and can be treated as entirely local, and (3) is reproduced
exactly in our derivation (which is quite different from
previous scattering theory calculations).

(ii) Experimental Implications.—The results above
justify the HVI equations [8,9], and the phenomenology
based on these [10], in the classical regime. However away
from this regime we find a quite new phenomenology.
Clean experimental tests of this will require (a) that the
vortex not be coupled to some other object (e.g., charged
ions), which change its natural dynamics, and (b) that the
vortex be coupled to the natural excitations of the system
(as opposed to, e.g., a source of external quasiparticles,
which can couple linearly to the vortex). The results will
also change in situations where the vortex is being
‘‘dragged’’ by some external time-varying potential [5],
since such potentials may strongly distort the vortex in the
region where they act.

The most obvious direct experimental realization of the
results here would be in 2-dimensional Bose-condensed
atomic gases; the dynamics of single vortices can then be
tracked in experiments [21] (e.g., in their spiraling out
from the trap center), and the viscous coefficients can
then, in principle, be extracted from such measurements
[22]. A detailed treatment using the present equations is
quite lengthy, and will be presented elsewhere. Our results
are also clearly relevant to experiments on turbulence in
superfluid 4He, which have recently begun to probe the
quantum regime [23], and any theory of vortex tunneling
in 4He or cold gases must include the viscous effects
described here (which are very far from being described
by a simple Caldeira-Leggett coupling [24]). One difficulty
with turbulence or tunneling is that in most experimental
cases the vortices are 3-dimensional objects, and the vortex
line may distort in many ways that are impossible to
capture analytically. It would nevertheless be interesting
to extend, at least numerically, the existing theories of
quantum turbulence [25] and vortex tunneling [26] in
4He to include the effects discussed here. Finally, we
emphasize that the results given here are not applicable
to fermionic superfluids like 3He or superconductors—the
form of the vortex-quasiparticle interaction is quite differ-
ent in these systems.

To summarize: within the constraints of the low-T
hydrodynamic picture, we find that the HVI equations
can be justified in a purely quantum-mechanical treatment,
with the addition of a fluctuation noise term, provided one

is in the classical regime ~� � 1. Outside this regime, one
needs to use a more general set of equations, which show
strong memory effects in the time domain.
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