
Statistics of Resonance Width Shifts as a Signature of Eigenfunction Nonorthogonality

Yan V. Fyodorov1 and Dmitry V. Savin2

1Queen Mary University of London, School of Mathematical Sciences, London E1 4NS, United Kingdom
2Department of Mathematical Sciences, Brunel University, Uxbridge, UB8 3PH, United Kingdom

(Received 16 January 2012; published 3 May 2012)

We consider an open (scattering) quantum system under the action of a perturbation of its closed

counterpart. It is demonstrated that the resulting shift of resonance widths is a sensitive indicator of the

nonorthogonality of resonance wave functions, being zero only if those were orthogonal. Focusing further

on chaotic systems, we employ random matrix theory to introduce a new type of parametric statistics in

open systems and derive the distribution of the resonance width shifts in the regime of weak coupling to

the continuum.
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The classical question of how energy levels of a quan-
tum system get shifted under the action of a perturbation
kept attracting renewed attention during the last two dec-
ades, mostly due to the established universality of such a
parametric motion for systems with chaotic dynamics or
intrinsic disorder [1,2]. In particular, the distributions and
correlation functions of parametric derivatives of energy
levels (‘‘level velocities’’) [1–3] and their second deriva-
tives (‘‘level curvatures’’) [4] were found explicitly using
the methods of random matrix theory [5], and also verified,
e.g., in microwave billiard experiments [6]. The other
reason for such an interest is the recent development of
the fidelity concept as the measure of the susceptibility of
internal dynamics to perturbations [7].

Experimentally, the energy levels are mostly accessible
by means of a scattering setup [8]. From such a viewpoint,
parametric dependencies of scattering characteristics, like
phase shifts and time delays [9], conductances [10], and S
matrix elements [11] were under intensive study. As to the
parental discrete energy levels, they are converted into the
resonances with finite lifetimes, since the original closed
system becomes open (unstable). Such resonances mani-
fest themselves in the energy-dependent S matrix as its
poles in the complex energy plane, and can be analytically
described as the complex eigenvalues of an effective non-
Hermitian Hamiltonian [12–14]. Notably, the correspond-
ing eigenfunctions are not orthogonal in the conventional
sense but rather form a biorthogonal system. Their non-
orthogonality plays an important role in many applications,
e.g., describing interference in neutral kaon systems [15],
influencing branching ratios of nuclear cross sections [16],
and yielding excess noise in open laser resonators [17,18].
It also features in decay laws of quantum chaotic systems
[19] and in dissipative quantum chaotic maps [20].

In such a context, the question of parametric motion of
resonances and associated resonance states in open sys-
tems arises very naturally, but to the best of our knowledge
has never been properly addressed. Our goal here is to
begin filling in that gap by considering universal statistics

of the shifts in the resonance widths under a generic
perturbation in chaotic systems. In particular, we will
demonstrate that such shifts are a clear manifestation of
eigenstate nonorthogonality, thus providing a promising
way to probe this spatial characteristic by purely spectro-
scopic tools. To this end let us stress that statistics of
complex poles and lifetimes in chaotic systems can be
verified via accurate scattering experiments in microwave
billiards [21] or photonic crystals [22]. It can be also
extracted from realistic computer simulations of quantum
graphs [23], semiconductor superlattices [24], dielectric
microresonators [25], or a system of randomly interacting
fermions [26]. As to the theoretical framework, it mainly
relies on studying the relevant non-Hermitian random
matrix theory [13,14], understanding of which has substan-
tially improved over the last two decades; see, e.g.,
Ref. [27] and references therein. Note that the spatial
properties related to the associated biorthogonal eigenvec-
tors are known to a much lesser extent [18,28–30].
As is well known [12–14] (see also [31] for most recent

reviews), resonance phenomena involving a group of N
interfering resonances can be adequately described in
terms of the effective non-Hermitian Hamiltonian

H eff ¼ H � i�WWy; (1)

which governs the dynamics of the open system. Here,
the Hermitian N � N matrix H corresponds to the
Hamiltonian of the closed counterpart, whereas the entries
Wc

n of the rectangular N �M matrix W are the decay
amplitudes that describe coupling of N discrete energy
levels, labeled by n, to M decay channels, labeled by c.
The coupling strength to the continuum is controlled by the
dimensionless positive constant �, with � � 1 (� ¼ 1)
being the particular case of weak (perfect) coupling. The
eigenvalue problem for the full non-Hermitian matrix
H eff reads as follows:

H eff jRni ¼ EnjRni and hLnjH eff ¼ EnhLnj (2)
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and determines its complex spectrum En ¼ En � i
2 �n.

Here En stands for the resonance positions (energies) and
�n > 0 denotes the corresponding widths [32]. The set of
the associated left and right eigenvectors (resonance wave
functions) satisfies the conditions of biorthogonality,
hLnjRmi ¼ �nm, and completeness,

P
N
n¼1 jRnihLnj ¼ 1.

In such a framework a perturbation of the closed coun-
terpart can be modeled by the term �V, where V is a
Hermitian N � N matrix and the real constant � is to
control the perturbation strength. The resonance parame-
ters for the perturbed open system are then to be deter-
mined from solving the following spectral problem for the
right eigenstates,

ðH eff þ �VÞjR0
ni ¼ E0

njR0
ni (3)

and a similar problem for the left eigenstates hL0
nj. In the

case of the weak perturbation, � � 1, one can follow
the standard perturbation theory routine and seek each of
the two eigenvectors corresponding to the new eigenvalue
E0
n as an expansion over nonperturbed basis of H eff , with

necessary modifications induced by biorthogonality [33].
To the first order in � this readily yields the expression for
the shift of the nth resonance in the form

�En � E0
n � En ¼ �hLnjVjRni; (4)

generalizing the standard result to the non-Hermitian case.
The resonance shift (4) contains both real and imaginary

parts, since hLnj � ðjRniÞy in general [34]. At this point we
stress that a nonzero value of the imaginary part of �En is
induced solely due to nonorthogonality of the resonance
states. This fact becomes apparent in the following
equivalent representation for the resonance width shift
��n � �2 Imð�EnÞ:

��n ¼ i�ðhLnjVjRni � hRnjVjLniÞ
¼ i�

X
m

ðUnmVmn � VnmUmnÞ; (5)

where we have made use of the completeness condition to
expand jLni ¼ P

mjRmihLmjLni and also introduced
Vnm ¼ hRnjVjRmi and Unm ¼ hLnjLmi. Since by construc-
tion Vnm ¼ V�

mn and Unm ¼ U�
mn, only the terms withm �

n contribute to the sum (5). The matrix U is just the Bell-
Steinberger nonorthogonality matrix [15] (see also a com-
pact description in [13]), and Unm � �nm in general. Thus,
the resonance width shift (5) would generically vanish only
if the resonance states were orthogonal [35], being thus a
sensitive indicator of their nonorthogonality.

In the rest of the Letter, we concentrate on the regime of
weak coupling to the continuum, � � 1, which permits
complete analytical investigation, and is the one that is the
most easily realized experimentally. Under such an as-
sumption, the non-Hermitian part i�WWy of H eff can
be treated as the perturbation of the Hermitian part H. To
the leading order in � the resonance positions coincide
with the energy levels of the closed system,Hjni ¼ Enjni,

whereas the resonance widths are given by expression
�n ¼ 2�hnjWWyjni ¼ 2�

P
M
c¼1 jWc

nj2. Similarly, the

right eigenvectors of H eff are readily found to be jRni ¼
jni � i�

P
m�n

ðWWyÞmn

En�Em
jmi, while the left ones read hLnj ¼

hnj � i�
P

m�n
ðWWyÞnm
En�Em

hmj. Substituting such expressions

into Eq. (4), one finds that to the leading order in both �
and � the energy shift is given by the standard expression
for the closed system �En ¼ �hnjVjni, whereas the shift in
the resonance width is determined by

��n ¼ 2��
X
m�n

hmjGnjmi
En � Em

; (6)

where Gn stands for the following Hermitian operator:

Gn ¼ WWyjnihnjV þ VjnihnjWWy: (7)

Aiming to describe the universal statistics of the reso-
nance shifts for generic chaotic systems (e.g., open bil-
liards, quantum dots, quantum graphs), we follow the
standard paradigm [5,8] and model H by a random N �
N matrix drawn from the Gaussian orthogonal (GOE) or
unitary (GUE) ensemble, depending on the presence or
absence of time-reversal symmetry, respectively. Universal
fluctuations are then expected to occur in the limit N � 1
at the local scale of the order of the mean level spacing
�� 1=N. Without loss of generality, one can restrict the
consideration to the spectrum center, where � ¼ ��=N
and 2� is the semicircle radius (� needs to be rescaled if
E � 0). As to the coupling amplitudes, they can be taken
[13] as real (GOE, � ¼ 1) or complex (GUE, � ¼ 2)
Gaussian random variables with zero mean and the vari-
ance hWa

nW
b�
m i ¼ ð�=�Þ�nm�

ab, the final results being
model independent provided the number of channelsM �
N. This readily yields the well-known result for the reso-
nance width distribution in terms of �2

� distribution with
� ¼ M� degrees of freedom (Porter-Thomas expression at
M ¼ 1 and � ¼ 1),

Pð�Þ
M ð	Þ ¼ ð2=�ÞM�=2

�ðM�=2Þ 	
M�=2�1e��	=2; (8)

where 	n ¼ ��n

2�� stands for the width measured in units of

the mean partial width (per channel). Distribution (8) has
the mean value h	i ¼ M and variance varð	Þ ¼ 2

M� h	i2.
In the limit N � 1, the rescaled matrix elements vðnÞ

m ¼
NhmjVjni= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðV2Þp
of the perturbation in the eigenbasis of

H become normally distributed random variables [36].
This results in the Gaussian distribution of the energy shifts

�En (i.e. ‘‘level velocities’’) with varð�EnÞ ¼ 2�2

�N2 TrðV2Þ.
At the same time the width shifts ��n must clearly have
much less obvious distribution due to the nontrivial struc-
ture of Eq. (6). To find the latter distribution explicitly, we
first scale the width shifts in the natural units to get rid of
the model-dependent features, and introduce
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yn ¼ ��n

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�varð�EnÞ

p : (9)

In close analogy with the case of the closed systems such
a rescaling is expected to capture universal (local)
fluctuations related to the parametric motion in generic
open systems. At the next step it is instructive to follow

Ref. [30] and treat the scalar product �
�

ffiffiffiffi
	n

p ðWWyÞmn ¼ zðnÞm

as a projection of the M-dimensional vector of the decay

amplitudes
ffiffiffi
�
�

p
Wm onto the direction determined by the

vector Wn at given n � m. As a result, the expression for
the rescaled width shifts takes the following convenient
form:

yn ¼
ffiffiffiffiffiffi
	n

p
�

X
m�n

�ReðzðnÞ�m vðnÞ
m Þ

En � Em

: (10)

The advantage of such a parametrization is that the corre-
sponding modula and angles turn out to be statistically

independent [13]. The projections zðnÞm can then be shown
to be normally distributed random variables (real at � ¼ 1
and complex at � ¼ 2) at any M � 1 [30].

We now compute the probability distribution PMðyÞ of
the rescaled width shifts (at the spectrum center) defined as

P MðyÞ ¼ �

�XN
n¼1

�ðEnÞ�ðy� ynÞ
�
; (11)

where the angular brackets denote the spectral average
over both energies En and widths 	n, whereas the bar

stands for the averaging over the quantities zðnÞm and vðnÞ
m ,

all of them being statistically independent. The latter task
can be easily performed by considering the Fourier trans-
form, yielding

e�i!yn ¼ Y
m�n

jEn � Emj�
½ðEn � EmÞ2 þ 	nð!�=�

ffiffiffiffi
�

p Þ2	�=2 : (12)

Substituting this expression back to Eq. (11), one can then
make use of the known explicit form of the joint probabil-
ity function of all eigenvalues to integrate out the nth
eigenvalue. The distribution can be finally represented as
follows:

P MðyÞ ¼
Z 1

0

d	ffiffiffiffi
	

p Pð�Þ
M ð	Þ
ð�Þ

�
yffiffiffiffi
	

p
�
; (13)

where the width distribution Pð�Þ
M ð	Þ is given by Eq. (8) and

the function 
ð�ÞðyÞ ¼ R1
�1

d!
2� e

i!yCð�Þ
N�1ð!Þ is the Fourier

transform of the following ratio of spectral determinants
for the (GOE or GUE) matrix H1 of the reduced size
N � 1:

Cð�Þ
N�1ð!Þ ¼ cð�ÞN�1

�
detðH1Þ2�

det½H2
1 þ ð!�=�

ffiffiffiffi
�

p Þ2	�=2
�
: (14)

The constant cð�ÞN�1 ¼ hdetjH1j��i ensures Cð�Þ
N�1ð0Þ ¼ 1

that automatically guarantees the normalization of

distribution (13) to unity. Objects similar to Eq. (14) natu-
rally arise in the analysis of weakly open chaotic systems
as a result of separating independent fluctuations in spectra
and in wave functions. Following the methods developed in
[18] for � ¼ 1 and in [37] for � ¼ 2, we have been able
to calculate the limiting expressions at N � 1, with the
explicit result being

Cð1Þ
1 ð!Þ ¼ 1

3
½j!jK1ðj!jÞ þ!2K2ðj!jÞ	;

Cð2Þ
1 ð!Þ ¼ e�2j!j

�
1þ 2j!j þ 4!2

3
þ j!j3

3

�
;

(15)

where K�ðxÞ stands for the modified Bessel (Macdonald)
function. Taking the Fourier transform, we finally arrive at


ð�ÞðyÞ ¼

8>>><
>>>:

4þy2

6ð1þy2Þ5=2; � ¼ 1

35þ14y2þ3y4

12�ð1þy2Þ4 ; � ¼ 2

: (16)
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FIG. 1. Distributions of the resonance width shifts for weakly
open chaotic systems with preserved (� ¼ 1, top) or broken
(� ¼ 2, bottom) time-reversal symmetry at M ¼ 1 ð
Þ, 2 (�),
5 (?), and 10 (h) open channels. The solid lines show our
analytical prediction, Eqs. (13) and (16). The symbols stand for
numerics with 2000 realizations of 250� 250 GOE (� ¼ 1) or
GUE (� ¼ 2) random matrices (only 25 levels around the
spectrum center were taken for each realization).
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Combination of Eq. (13) with Eqs. (8) and (16) completely
solves the problem of universal statistics of the resonance
width shifts in a chaotic system weakly coupled to the
continuum viaM equivalent channels. We see that far tails

of the distribution decay as PMðyÞ / y�ð�þ2Þ due to the
Wigner-Dyson level repulsion at small energy level sepa-
rations, the feature which such a distribution shares with
that for level curvatures [4]. In contrast to the level curva-
ture distribution, the broadness of the width shift distribu-
tion (13) can be additionally controlled and is proportional

to
ffiffiffiffiffi
M

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
varð	Þp

. Physically, this gives the variance of
widths the role of a universal parameter that controls the
degree of nonorthogonality in weakly open chaotic sys-
tems [29,30]. In the limit of many weakly open channels
M � 1 (but still M � N) the widths cease to fluctuate, so
distribution (8) becomes very narrow and peaked around
its mean value h	i ¼ M. In such a limit the width shifts are
still widely distributed, with the probability density for the

scaled variable ~y ¼ y=
ffiffiffiffiffi
M

p
being given just by the function


ð�Þð~yÞ, Eq. (16). These findings are illustrated in Fig. 1,
which shows the distribution PMðyÞ at several values ofM.
Also shown are the results of straightforward numerical
simulations of the width shifts (9) with GOE/GUE random
matrices, the agreement being flawless.

In summary, we have shown that the change in the
resonance widths due to external perturbation is a sensitive
indicator of eigenfunction nonorthogonality in open quan-
tum or wave systems and have computed its distribution
analytically for weakly open chaotic systems with pre-
served or broken time-reversal symmetry. Our predictions
can be verified, e.g., in experiments with reverberant dis-
sipative bodies [38], microwave cavities [39], and elastic
plates [40], where other aspects of nonorthogonality were
investigated. Potentially, they may also have implications
for the other type of non-Hermitian systems, those with PT
symmetry, which is a rapidly developing field [41]. We also
note a link to a more formal concept of pseudospectra of
non-self-adjoint operators considered mostly in mathe-
matical literature [42]. The generalization of our results
to the case of arbitrary modal overlap is another challeng-
ing problem to consider in future studies.
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[11] A.M. S. Macêdo, Phys. Rev. E 50, R659 (1994); R.
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[21] U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann,
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