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We introduce an analytical kernel, the ‘‘cusp’’ kernel, to model the effects of velocity-changing

collisions on optically pumped atoms in low-pressure buffer gases. Like the widely used Keilson-Storer

kernel [J. Keilson and J. E. Storer, Q. Appl. Math. 10, 243 (1952)], cusp kernels are characterized by a

single parameter and preserve a Maxwellian velocity distribution. Cusp kernels and their superpositions

are more useful than Keilson-Storer kernels, because they are more similar to real kernels inferred from

measurements or theory and are easier to invert to find steady-state velocity distributions.
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Collision kernels Wðx; yÞ are often used to model the
effects of binary, velocity-changing collisions in experi-
ments with dilute, optically pumped atoms in low-pressure
buffer gases [1–3]. Collision kernels are connected to the
transport coefficients of classical transport theory [4,5]. By
‘‘collision’’ we mean a statistical ensemble of collisions
with impact parameters b less than some maximum value
bm, above which the collisional effects are negligible, and
including all orbital planes—or the partial wave equiva-
lent. If a pumped atom has a velocity y along the direction
of a pumping beam before a collision, the postcollision
probability to find the atom with a velocity between x and
xþ dx along the same direction is dxWðx; yÞ. We express
these velocities in units of the most-probable three-

dimensional speed vD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=M

p
for atoms of mass M

and temperature T, where kB is Boltzmann’s constant. One
of the most important applications of this physics is the
backscattering of light by sodium atoms at an altitude of
90–100 km above the Earth in laser guidestar systems,
which are extensively used in modern ground-based tele-
scopes to compensate for atmospheric turbulence [6,7].

For many years, models of experiments have most often
used the Keilson-Storer (KS) collision kernel [8], which
has the simple analytical form

Waðx; yÞ ¼ e�ðx�ayÞ2=b2

b
ffiffiffiffi
�

p : (1)

The KS kernel has a single, real ‘‘memory parameter’’ a,

with 0 � a < 1 and a corresponding width b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
.

The KS kernel is normalized as a probability distribution,Z
Waðx; yÞdx ¼ 1; (2)

and has no effect on a Maxwellian velocity distribution

e�x2=
ffiffiffiffi
�

p
, since Z

Waðx; yÞe�y2dy ¼ e�x2 : (3)

Collision kernels that do not satisfy the constraint (3)
produce non-Maxwellian steady-state velocity distribu-
tions, which are not states of maximum entropy.

KS kernels, however, are only modestly similar to real
kernels measured by experiments or modeled from realistic
interatomic potentials [9–14]. The most striking difference
is that real kernels display a sharp peak near the initial
velocity y, due to weak collisions (or small-angle scatter-
ing), that is absent in KS kernels. More realistic model
kernels with sharp peaks often lack the simplicity of KS
kernels or violate the equilibrium requirement (3) [15–18].
Here, we discuss a ‘‘cusp’’ kernel Csðx; yÞ, a model kernel
parameterized by a single ‘‘sharpness parameter’’ s, that
satisfies (2) and (3) but is more similar to real kernels than
the KS kernel and is much easier to invert to find steady-
state velocity distributions.
Let �ðx; tÞdx be the number of atoms at time t with

velocity between x and xþ dx in a spin-polarized mode
of a density matrix. A variant of the Boltzmann equation
describes the evolution of � by

@

@t
�ðx; tÞ ¼ �ð�sd þ �vdÞ�ðx; tÞ

þ �vd

Z
Wðx; yÞ�ðy; tÞdyþ Pðx; tÞ: (4)

Collisions cause the spin polarization to relax at the
velocity-independent rate �sd. For population spin modes,
like longitudinal spin polarization, �sd is a non-negative
real number. For coherence spin modes, like transverse
spin polarization, the Bohr frequency of the mode is in-
cluded as an imaginary part of �sd. Velocity-changing
collisions transfer atoms with precollision velocities be-
tween y and yþ dy to atoms with velocity x at the rate
�vdWðx; yÞ. Velocity-selected spin polarization is produced
by optical pumping at a rate Pðx; tÞ. For a monochromatic
pumping laser, one can approximate Pðx; tÞ � p�ðx� xlÞ,
where xl is the velocity of atoms that have been Doppler-
shifted into resonance with the laser light and p parameter-
izes the pumping rate.
Snider [19] has shown that the KS kernel (1) can be

written in terms of its right and left eigenfunctions as
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Waðx; yÞ ¼
X1
n¼0

anvnðxÞvL
n ðyÞ: (5)

The right and left eigenfunctions are

vnðxÞ ¼ HnðxÞe�x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn!�

p (6)

and

vL
n ðyÞ ¼ HnðyÞffiffiffiffiffiffiffiffiffiffi

2nn!
p ; (7)

respectively, where HnðxÞ is a Hermite polynomial:
H0ðxÞ ¼ 1, H1ðxÞ ¼ 2x, H2ðxÞ ¼ 4x2 � 2; . . . . The
right and left eigenfunctions are orthonormal,R
vL
n ðxÞvmðxÞdx ¼ �nm, and complete,

P
nvnðxÞvL

n ðyÞ ¼
�ðx� yÞ.

In reality, there are many more ‘‘weak’’ (or grazing-
incidence) collisions, corresponding to a KS memory pa-
rameter a � 1, than ‘‘strong’’ (or head-on) collisions with
a � 0. Simple KS kernels do not capture this dominance of
weak collisions. A better model would be a superposition
of KS kernels weighted to have the most-probable value of
a close to 1. Such a probability density is

PsðaÞ ¼ sas�1; (8)

where we will call the nonzero parameter s the ‘‘sharp-
ness.’’ For large positive sharpnesses s � 1, the probabil-
ity density (8) heavily weights memory parameters a � 1.
We call the kernel produced by the probability density (8)
and (5),

Csðx; yÞ ¼
Z 1

0
Waðx; yÞPsðaÞda ¼ X1

n¼0

�
s

sþ n

�
vnðxÞvL

n ðyÞ;

(9)

a cusp kernel. Cusp kernels are normalized, as in (2), and
they transform a Maxwellian distribution into itself, as in
(3). Representative KS and cusp kernels are shown in
Fig. 1. Cusp kernels often resemble hard-sphere kernels
[20–22]. For s > 1, cusp kernels display a sharp peak near
the initial velocity y, with a sharpness that increases with
the value of the parameter s.

Morgan and Happer [23] have shown that (9) can be
written as

Csðx; yÞ ¼ s2s�ðsÞffiffiffiffi
�

p ey
2
Rsð�x<ÞRsðx>Þ; (10)

where �ðsÞ is the Euler gamma function, x> is the greater
of the two arguments x and y, and x< is the lesser. For
integer values of the sharpness s, the right functions RsðzÞ
can be written as

RnðzÞ ¼
� 1
2

ffiffiffiffi
�

p
erfcn�1ðzÞ; n ¼ 0;þ1;þ2; . . . ;

e�z2HjnjðzÞ; n ¼ 0;�1;�2; . . . :
(11)

Here, erfcnðzÞ denotes a repeated integral of the error
function, as discussed in Sec. 7.2 of Abramowitz and
Stegun [24]. For noninteger s, the right function RsðzÞ
can be evaluated with the power series

RsðzÞ ¼
X1
n¼0

ffiffiffiffi
�

p ð�zÞn
n!2s�n�ð12 þ s

2 � n
2Þ
: (12)

RsðzÞ is an entire function of both z and s. Using asymp-
totic expressions for Rs [23], we find an approximation for
Csðx; yÞ that gives values almost the same as those of (10)
for jsj � 1 and for both jxj and jyj of order 1:

2 lnCsðx; yÞ ’ y2 � x2 � 2jx� yj ffiffiffiffiffi
2s

p þ ln

�
s

2

�
: (13)

The inverse of the transformation (9) is

Waðx; yÞ ¼ 1

2�i

Z cþi1

c�i1
1

s
Csðx; yÞe�s lnads; (14)

where c > 0 is any positive number. To prove (14), one can
represent Csðx; yÞ with the series (9), close the path of
integration with an ‘‘infinite semicircle’’ in the negative
half of the complex s plane (for 0< a< 1), and use
Cauchy’s residue theorem to recover the series (5).
For either KS kernels or cusp kernels and for time-

independent pumping, we can write (4) as

@

@t
�ðx; tÞ ¼ �

Z
�ðx; yÞ�ðy; tÞdyþ PðxÞ; (15)
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FIG. 1 (color online). A comparison of KS kernels (top) with
various memory parameters a and cusp kernels (bottom) with
various sharpness parameters s. In contrast to KS kernels, cusp
kernels display a sharp peak near the initial velocity y ¼ 1.
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where the damping kernel is

�ðx; yÞ ¼ X1
n¼0

�nvnðxÞvL
n ðyÞ; (16)

and the eigenvalues of the damping kernel for KS and cusp
kernels are

�n ¼
�
�sd þ �vdð1� anÞ KS;
�sd þ �vdn=ðnþ sÞ cusp:

(17)

Most experiments actually measure the steady-state den-
sity matrix, the solution to (15) when @�=@t ¼ 0, which
has the amplitude

�ðxÞ ¼
Z

��1ðx; yÞPðyÞdy: (18)

Using (16) to evaluate the resolvent ��1ðx; yÞ, we find

��1ðx; yÞ ¼ X1
n¼0

vnðxÞvL
n ðyÞ

�n

¼ 1

�1
þ �vdWðx; yÞ

�1�0

; (19)

where �0 ¼ �sd and �1 ¼ �sd þ �vd. We see from (18)
that the first term of (19), 1=�1, which corresponds to no
velocity-changing collisions, ‘‘imprints’’ the primary ve-
locity distribution P from the laser source onto the steady-
state velocity distribution �. The second term gives a
collisional background (or pedestal) that is spread out
over additional velocities, as described by the ‘‘resolvent
kernel’’ Wðx; yÞ. For KS and cusp collision kernels, the
resolvent kernels are, respectively,

Wðx; yÞ ¼ X1
k¼0

�0�
k
vd

ð�1Þkþ1
Wakþ1ðx; yÞ (20)

and

Wðx; yÞ ¼ Crðx; yÞ; where r ¼ sð�0=�1Þ: (21)

If we represent the collision kernel with a cusp kernel
Csðx; yÞ of sharpness s, then the resolvent kernel (21) is
simply another cusp kernel Crðx; yÞ, defined by (9) or (10),
with a diminished sharpness r ¼ sð�0=�1Þ. In contrast, if
the collision kernel is represented with a KS kernel, the
resolvent kernel is an infinite series (20) of KS kernels with
the sequence of modified memory parameters a; a2; a3; . . . ,
which converges rather slowly unless the parameter a is
nearly zero.

To better approximate a real collision kernel, one could
superpose m> 1 cusp kernels with sharpnesses
s1; s2; . . . ; sm and with corresponding weights
f1; f2; . . . ; fm that sum to unity,

P
jfj ¼ 1, as

Wðx; yÞ ¼ Xm
j¼1

fjCsjðx; yÞ: (22)

The multicusp kernel (22) satisfies the constraints (2) and
(3). The second line of (17) is then

�n ¼ �sd þ �vd

Xm
j¼1

fjn

nþ sj
¼ NðnÞ

DðnÞ : (23)

We can write the denominator and numerator of (23) as the
polynomials

DðnÞ ¼ ðnþ s1Þðnþ s2Þ � � � ðnþ smÞ (24)

and

NðnÞ ¼ �1ðnþ r1Þðnþ r2Þ � � � ðnþ rmÞ; (25)

where we have introduced the roots rj ofNðnÞ. Substituting
(23) into (19) and expanding DðnÞ=NðnÞ in partial frac-
tions, we find that the resolvent kernel is

Wðx; yÞ ¼ Xm
j¼1

gjCrjðx; yÞ: (26)
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FIG. 2 (color online). A comparison of a three-cusp fit and a
measured collision kernel for Rb in He from Gibble and
Gallagher (GG) [12] for the initial velocities y ¼ 0:06 (top)
and y ¼ 1:37 (bottom). The GG kernel is represented by a model
form with parameters from Table I of Ref. [12], normalized
according to (2). The parameterized model form is estimated to
agree with the measured kernel for Rb in He to within roughly
10% over the range of velocities shown [12]. The GG kernel and
three-cusp kernel are solid lines, with the GG kernel (black)
slightly sharper than the three-cusp kernel (red). The three-cusp
kernel was fit to the GG kernel for y ¼ 0:06 (top), which gave
the superposition parameters ½f1; f2; f3� ¼ ½0:13; 0:37; 0:50� and
½s1; s2; s3� ¼ ½7:8; 27:2; 500�, as defined by (22). The individual
cusps fjCsj ðx; 0:06Þ are shown by the dashed lines in the top

panel. As the bottom panel shows, the same fit parameters give
good agreement with measurements for y ¼ 1:37. See Fig. 10 of
GG [12] for a comparison with KS fits to measurements.
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Here, Crjðx; yÞ is a cusp kernel of sharpness rj, and the

weight coefficients gj, which sum to unity,
P

jgj ¼ 1, are

gj ¼ lim
n!�rj

�1�0ðnþ rjÞDð�rjÞ
�vdrjNðnÞ : (27)

We see that if the damping kernel �ðx; yÞ contains m cusp
kernels of sharpnesses s1; s2; . . . ; sm, the resolvent
��1ðx; yÞ also contains m cusp kernels with modified
sharpnesses r1; r2; . . . ; rm given by (25). There does not
seem to be an analogous, simple relation for the resolvent
of a damping kernel with multiple KS kernels. An example
of how well a sum of cusp kernels can approximate an
experimentally inferred kernel [12] is shown in Fig. 2. As
the figure demonstrates, cusp kernels are a convenient basis
to parameterize experimentally inferred kernels.

In summary, we have introduced a convenient model
collision kernel, the cusp kernel Csðx; yÞ, which is charac-
terized by a single sharpness parameter s. Like KS kernels,
cusp kernels and their superpositions are normalized, as in
(2), and they have a Maxwellian velocity distribution for
their equilibrium state, as in (3). Compared to KS kernels,
cusp kernels and their superpositions are more similar to
real kernels and can be more conveniently inverted to
model the steady-state velocity distributions of optically
pumped atoms in low-pressure buffer gases.
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