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We show that, while it is well-known that first-order perturbation theory leads to linear response (of, e.g., a

material system to an external field), the reverse is not true: linear response does not necessarily imply the

validity of first-order perturbation theory, nor does it follow from it that the external perturbation isweak.We

do so by analyzing the intensity dependence in the photoexcitation followed by dissociation or isomerization

of a boundmolecular system by a shaped broadband laser pulse.We show that, in certain cases where strong

field effects are definitely present, the observed photoexcitation yield as a function of intensity may exhibit

linear dependence over a wide range of intensities. The behavior is shown to coexist with a rather extensive

range of coherent control over the branching ratios, an effect that was shown in the past to be impossible in

the single precursor state (e.g., in the first-order perturbation theory) domain. For example, we demonstrate

computationally that when (flat continuum-mediated) Raman transitions are present, appropriate pulse

shaping can lead to a linear yield with intensity over a wide range of intensities, while coherent control over

the branching ratio is significant. Thus, it is not necessary to invoke external bath effects (as is currently being

done) to explain present-day experiments where coherent control is observed in the linear response regime.
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When a pulse of coherent light excites (dissociates or
photoisomerizes) a molecular system, the system can
undergo dipole transitions to a number of channels, such
as different electronic states or different photoproducts. By
carefully designing the light pulses, the branching ratios
between the various channels yields can be controlled.With
strong field control, optimization in field parameters such
as intensity, chirp rate, or pulse duration can be employed to
control such branching ratios, even in the presence of a
dissipative environment [1,2]. It is also possible to control
the branching ratios by tuning only the relative phase
between two frequency components of the excitation light,
in a process called ‘‘phase-only’’ bichromatic control [3,4].
It has been shown that phase-only bichromatic control
requires the interference between two ‘‘indistinguishable’’
paths, which means that the information as to which path is
followed should be lacking. Such control cannot be realized
in the weak field (i.e., the first-order perturbation) limit
when one starts from a single bound state [5].

In spite of the above, a recent experiment [6] reported
coherent control, including phase-only control, in the pho-
toisomerization of bacteriorhodopsin by shaped broadband
laser pulses, which exhibited a linear dependence of the
yield as a function of laser intensity. In order to explain
this finding, it was subsequently assumed that bath-
environmental effects cause the control [7,8], although it
was not easy to see how the environment could generate and
preserve the coherence necessary for phase-only control.
Here, we offer an alternative explanation of this finding
which obviates the need to invoke environmental effects. In
doing so, we correct a common, potentially misleading,
concept in laser-molecule interaction physics, which is

that linear intensity response implies the validity of (first-
order) perturbation theory. We show that, as we shape the
pulse beyond the transform-limited form, we modify the
non-first-order continuum-mediated Raman transitions
among bound vibrational levels (Fig. 1) and in this way
modify phase control, while at the same timemaintaining or
even enhancing the linear nature of the overall yield. The
clear conclusion is that linearity does not necessarily imply
the validity of (first-order) perturbation theory, as it can
occur way beyond the first-order perturbative regime.
We consider a molecule initially in a bound state under-

going a transition to a degenerate (quasi)continuum
(Fig. 1) due to the action of an excitation pulse whose
electric field is given asEðtÞ ¼ 2�̂�ðtÞ cosð!LtÞ, where �̂ is
the polarization direction, �ðtÞ is the pulse temporal enve-
lope, and !L is the ‘‘center frequency.’’ The combined
light-matter Hamiltonian (in atomic units, @ ¼ 1) is
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FIG. 1. A schematic illustration of a broadband photoexcita-
tion with two excited electronic potentials. The pulse’s spectrum
is wide in energy, compared with ground vibrational level
separation.
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H ¼ HM þHI;

HM ¼ XN
j¼1

EjjEjihEjj þ
X
n

Z
EjE; n�ihE; n�jdE;

HI ¼ � ~� � EðtÞ;

(1)

where ~� is the electric dipole operator; jE; n�i are con-
tinuum eigenstates characterized by the energy E and by n,
the asymptotic (dissociation or isomerization) channel in-
dex, which is the main quantity we wish to control.N is the
number of bound states that are effectively coupled by
(continuum-mediated) resonance Raman transitions as en-
abled by the bandwidth of the excitation pulse.

The time-dependent state of the material system is thus
expanded as

j�ðtÞi ¼ XN
j¼1

bjðtÞe�iEjtjEji

þX
n

Z
bE;nðtÞe�iEtjE; n�idE: (2)

The Schrödinger’s equation for the time evolution of this
state then translates into the following differential equa-
tions (with rotating wave approximation):

_bðtÞ ¼ i
X
n

Z
�E;nðtÞbE;nðtÞdE;

_bE;nðtÞ ¼ i�y
E;nðtÞ � bðtÞ;

(3)

where we have organized the bound level amplitudes
and Rabi frequencies as vectors ½bðtÞ�j � bjðtÞ and

½�E;nðtÞ�j � �ðtÞ�j;nðEÞe�i�E;jt. The transition dipole ma-

trix elements are �j;nðEÞ � hEjj ~� � �̂jE; n�i, and the laser
detuning from resonance is �E;j ¼ E� Ej �!L.

The time evolution of the bound-state amplitudes is
obtained by formally integrating bE;nðtÞ and substituting

the expression into the first part of Eq. (3), assuming that
bE;nð�1Þ ¼ 0 for all E and n:

_b jðtÞ ¼ ��ðtÞeiEjt
Z t

�1
��ðt0ÞX

k;n

FðnÞ
j;k ðt� t0Þbkðt0Þe�iEkt

0
dt0;

(4)

where

FðnÞ
j;k ðt� t0Þ ¼

Z
�j;nðEÞ�n;kðEÞe�iðE�!LÞðt�t0ÞdE: (5)

The matrix spectral correlation function FðnÞ
j;k ðt� t0Þ

can be further simplified by applying the ‘‘slowly varying
continuum approximation’’ [3], in which we replace each
energy-dependent transition dipole matrix element by
some average value �j;nðEÞ ffi �j;nð!LÞ � ��j;n, and it

follows that FðnÞ
j;k ðt� t0Þ ffi 2� ��j;n ��n;k�ðt� t0Þ. This ap-

proximation is valid whenever the bound-continuum

transition dipole matrix element changes little over the
pulse’s energy bandwidth. The result is a simplified set
of equations for the bound amplitudes

_bðtÞ ¼ ��IðtÞ � bðtÞ; (6)

which can be solved as (with Dyson series exponential)

½�IðtÞ�j;k ¼ �j�ðtÞj2X
n

��j;n ��n;ke
iðEj�EkÞt; (7)

which can be solved in a closed form as

bðtÞ ¼ exp

�
�
Z t

�1
�Iðt0Þdt0

�
bð�1Þ: (8)

Substitution of the bound-state coefficients of Eq. (8) into
the expression for the continuum coefficients of Eq. (3),
while imposing bE;nð�1Þ ¼ 0, results in

bE;nðtÞ ¼ i
Z t

�1
�y

E;nðt0Þe�
R

t0
�1

�Iðt00Þdt00bð�1Þdt0; (9)

from which we obtain the probability amplitude for pho-
todissociation (or photoisomerization) to channel n as

PE;n ¼ jbE;nðt ! 1Þj2: (10)

We now apply the above to the case of two bound vibra-
tional states jE1i and jE2i, coupled to two continuum
channels n ¼ �;�, where we calculate the energy-
averaged branching ratio, which is ��;� ¼R1
�1 PE;�dE=

R1
�1 PE;�dE. It is convenient to investigate

the bound-state coefficients using three dimensionless pa-

rameters, qn � ��ðnÞ
2 = ��ðnÞ

1 , n ¼ �;�, and Q ¼ ��ð�Þ
1 = ��ð�Þ

1 ,
and, with shorthand notation, �2 � j ��1;�j2,
bðtÞ ¼ e

�MðtÞ
bð�1Þ;

MðtÞ ¼ �
ð1þQ2ÞSðtÞ ðq� þQ2q�ÞRðtÞ

ðq� þQ2q�ÞR�ðtÞ ðq2� þQ2q2�ÞSðtÞ

 !
;

SðtÞ ¼ �2
Z t

�1
j�ðt0Þj2dt0;

RðtÞ ¼ �2
Z t

�1
j�ðt0Þj2eiðE1�E2Þt0dt0: (11)

Although q�, q�, and Q are complex in general, we

simplify the analysis by choosing them to be real. We
note that, when q� ¼ q�, the branching ratio becomes

��;� ¼ 1=Q2 and no optical control is possible.

In a typical experimental setup, one employs a ‘‘pulse
shaper’’ [9] which allows one to specify the amplitudes and
phases of each frequency component. Here, we simplify
this process by considering a subclass of pulses consisting
of two equally wide, linearly chirped subpulses. The inter-
action Hamiltonian now assumes the form

HI¼�2�f�ðtþ t0Þcos½!ðtÞt�þ�ðt� t0Þcos½!ðtÞt���g
ffi���sðtÞe�i!Lt; !ðtÞ¼!Lþa0t;

�sðtÞ� ½�ðtþ t0Þþei��ðt� t0Þ�e�ia0t
2
: (12)
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Choosing

�sðtÞ ¼ I1=2½2ð1þ 2iAÞð1þ cos�e�t2
0
=	2Þ��1=2 �

�
exp

� �ðtþ t0Þ2
2	2ð1þ 2iAÞ

�
þ exp

� �ðt� t0Þ2
2	2ð1þ 2iAÞ þ i�

��
; (13)

whose spectrum is

~� sð!Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
�sðtÞe�i!tdt ¼ cosð!t0 ��=2Þ � ð2IÞ

1=2	 exp½i�=2� iA	2!2 �!2	2=2�
½1þ cos� expð�t20=	

2Þ�1=2 ; (14)

guarantees that the total pulse energy is preserved for all t0,
�, and A pulse parameters.

The results below are displayed using the dimensionless
shaping parameters, T0 � t0=	 for subpulse delay, yielding
the number of ‘‘teeth’’ in the spectral ‘‘comb,’’ where 	 is
further parametrized by the W parameter via the relation
	 ¼ W=jE1 � E2j; the phase angle �, which shifts the
spectral comb in frequency space; and A, which determines
the linear chirp rate a0 ¼ A=½	2ð1þ 4A2Þ�. This type of
parametrization allows for the separate control of the am-
plitude via T0 and � and the control of the phase via A.
Note that the choice ðT0; �; AÞ ¼ ð0; 0; 0Þ corresponds to a

transform-limited pulse with temporal profile �sðtÞ ¼
I1=2 exp½�t2=ð2	2Þ�.
Given the pulse shape, the probabilities of photodisso-

ciation (photoisomerization) into the n ¼ �;� channels
are calculated using Eq. (11). For the Q ¼ 2, q� ¼ 0:6,
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FIG. 2. Sample photoproduct population dynamics for differ-
ent time delays and chirping parameters. The intensity value is
�2	I ¼ 0:01.

FIG. 3. The photoexcitation yields and branching ratios vs the
field intensity. At �2	I � 0:03, the photoexcitation yield be-
comes more linear due to shaping.

PRL 108, 183002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
4 MAY 2012

183002-3



q� ¼ 1:2, andW ¼ 0:5 case, Fig. 2 shows the probabilities

as functions of time. Because of the assumed ‘‘flatness’’ of
the continuum, the changes in the probability are rather
monotonic in time. Also, having started with state jE1i,
state jE2i is populated by continuum-mediated resonance
Raman transitions. Figure 3 displays PðIÞ, the photoexci-
tation yield given as the total population removed from the
bound-state manifold after the pulse is over, with PðIÞ ¼P

nPE;n, where PE;n are obtained from Eq. (10). The phase

� is found to contribute negligibly. We see that the curves
start saturating after displaying a linear dependence. At
moderately strong intensities, (substantial) control over the
branching ratio as a function of T0 and A is clearly in
evidence. For example, at intensity values of �2	I ¼
0:01–0:02, the yield for the ðT0 ¼ 0; A ¼ 0Þ pulse displays
a short bout of linear I dependence followed by the onset of
saturation. In contrast, the yield for the ðT0 ¼ �;A ¼ 0Þ,
ðT0 ¼ 0; A ¼ �Þ, or ðT0 ¼ 2�;A ¼ �Þ pulses displays a
much more protracted linear phase prior to saturation.

In spite of the nearly linear photoexcitation yield for
�2	I ¼ 0:01, the branching ratios exhibit a rather exten-
sive range of control, of about 16% for shaped pulses. This
is the main result of this Letter. Even at around �2	I ¼
0:005, where all the yield curves are essentially the same
and highly linear, the range of branching ratio control is
still about 8%, obviously a non-first-order behavior.
Only when the intensity approaches zero (e.g., at �2	I ¼
0:0001), where the yield approaches zero, too, does the
variation in the branching ratio due to shaping disappear.

In order to quantify the visibly evident high degree of
linear intensity dependence, we have also calculated
d2P=dI2jI0I0=½2dP=dIjI0�, the ratio between the second-

order and the first-order terms in the Taylor series expan-
sion about I0. Figure 4 shows the degree of nonlinearity

calculated in this manner, plotted against �2	I0. We see
that, until �2	I0 ¼ 0:02, where all the curves begin to
saturate significantly, pulses whose shapes are defined by
ðT0 ¼ �;A ¼ 0Þ, ðT0 ¼ 0; A ¼ �Þ, or ðT0 ¼ 2�;A ¼ �Þ
exhibit a greater degree of linearity, as compared to a
transform-limited pulse [i.e., ðT0 ¼ 0; A ¼ 0Þ]. Up to
�2	I0 ¼ 0:01, the nonlinear coefficients of the above
pulses are about half their transform-limited values.
The physical reason for this enhanced linearity of the

yield with pulse shaping is due to the coherent interplay
between the two subpulses. Essentially, the first subpulse
creates by a (continuum-mediated) Raman process a

FIG. 4. The nonlinearity of the intensity response curves vs
�2	I0.

FIG. 5. The intensity response curves for an initial superposi-
tion of two bound states c i ¼ c1jE1i þ ei�0c2jE2i. The upper
two panels are the intensity response and control for �0 ¼ 0 and
variable c2; the lower two panels are the response and control at
fixed c22 ¼ 0:4 and the variable �0.
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superposition of the jE1i and jE2i bound states. The second
subpulse then dissociates this superposition state in the
usual bichromatic control scenario [3,4]. We verify this
mechanism by looking at the intensity response (shown
in the top panel of Fig. 3) as a function of T0. As T0 is
increased, the shapes of the curves are seen to be periodi-
cally modulated. A similar periodic change of behavior is
seen when the chirp parameter A is increased for a fixed
value of T0. However, when we set q� and q� to zero, the

variations in T0 or A no longer alter the intensity response
curves, nor do such variations affect the branching ratio.

We also examine here the case in which the initial state
is composed of a coherent superposition of the two bound
states, c1jE1i þ ei�0c2jE2i with c21 þ c22 ¼ 1, subject to
the action of a simple transform-limited excitation pulse,
for which ðT0 ¼ 0; A ¼ 0Þ. This time, it is the variations in
c2, or the relative phase �0, that affect the intensity re-
sponse curves. In Fig. 5, we see changes to the linearity of
the curves, now due to changes in the c2 and �0 parame-
ters. The variation in the branching ratio, due to changes in
these variables, is quite significant. The branching ratios
are, however, insensitive to the laser intensity because
control is mainly derived from the variation in the initial
superposition rather than the field.

In summary, by first developing a simple time-
dependent, nonperturbative, model of coherent control of
a bound molecular system interacting with a broadband
pulse, we are able to probe how pulse shaping affects the
intensity dependence of the photoexcitation yield. We have
shown that shaped pulses may exhibit a wide range of
linear response of the overall yield, even at moderately
high intensities. The mechanism responsible for this be-
havior is bichromatic control in conjunction with

continuum-mediated Raman transitions between bound
states. Secondly, we have shown that extensive coherent
control over the branching ratio can coexist with extended
linear intensity regimes. Thus, linear intensity response,
which we have shown to occur even for moderately strong
pulses where nonperturbative effects are present, is
not a necessary indicator for the validity of first-order
perturbation theory. Third, it is not necessary to look for
environmental effects in explaining the experimental re-
sults for the control of the bacteriorhodopsin isomerization
channels [6].
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