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A Bayesian analysis of the world’s pð�;KþÞ� data is presented. From the proposed selection of 11

resonances, we find that the following nucleon resonances have the highest probability of contributing

to the reaction: S11ð1535Þ, S11ð1650Þ, F15ð1680Þ, P13ð1720Þ, D13ð1900Þ, P13ð1900Þ, P11ð1900Þ, and

F15ð2000Þ. We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon

resonances up to spin J ¼ 5=2. We evaluate all possible combinations of 11 candidate resonances. The

best model is selected from the 2048 model variants by calculating the Bayesian evidence values against

the world’s pð�;KþÞ� data.
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A thorough knowledge of the nucleon-resonance (N�)
content of open-strangeness production reactions could
dramatically improve our understanding of the nucleon’s
structure. Indeed, it provides a test bed for the predictedN�
spectra from competing baryon models [1,2]. Despite
being the subject of numerous analyses, the set of N�’s
that contribute to pð�;KþÞ� is not unambiguously deter-
mined. The Particle Data Group (PDG) [3] lists four reso-
nances with a fair evidence of existence in the Kþ� decay
channel. Of these, only the S11ð1650Þ has a three-star status
which corresponds to a very likely contribution to this
channel [3]. This is reflected by the often contradictory
outcomes of different analyses on which the PDG ratings
are based. This disparity is illustrated in Table I. The
persistent lack of consensus, despite the increasing avail-
ability of pð�;KþÞ� data, can be attributed in part to the
important role played by nonresonant dynamics.

The criterion to determine whether a resonance contrib-
utes significantly or insignificantly varies among different
analyses. In this Letter, we wish to address this issue in a
statistically solid way, using Bayesian inference. The past
decade has seen the development of advanced coupled-
channels models [4,5,7,12,13]. The effect of channel open-
ings has been identified as playing an important role in the
reaction dynamics [14]. As Bayesian inference requires
nontrivial numerical computations in the parameter space,
to date it can only be done in an efficient single-channel
reaction model, which does not capture the full complexity
of coupled-channels models. We perform an analysis using
a set of nucleon resonances that are likely to contribute
to pð�;KþÞ�, within the Regge-plus-resonance (RPR)
model [9,15,16]. The RPR model is devised as a unified
description of both the high-energy region (

ffiffiffi
s

p
*

2:5 GeV), where the differential cross section is forward
peaked, and the resonance region (

ffiffiffi
s

p
& 2:5 GeV). In the

RPR approach, the high-energy region is described using a
Regge model. It is based on the exchange of the Kþð494Þ
and K�þð892Þ trajectories in the t channel and is parame-
trized by three coupling strengths and two phases [17].

In the resonance region, the Regge model provides a fair
description of the elusive background. By coherently add-
ing the s-channel nucleon-resonance contributions in this
energy region, one obtains a description of the electromag-
netic Kþ� production process for photon energies from
threshold up to 16 GeV [9].
Our formalism makes use of the recently suggested

consistent couplings for resonances with J ¼ 3=2 and J ¼
5=2 [18]. This means that all spurious degrees of freedom
due to the lower-spin components are removed from the
J � 3=2 propagators. In addition, the couplings of all
resonances with J � 3=2 can be described by a mere two
parameters. A spin-dependent multidipole-Gauss hadronic
form factor [18] is employed to regularize the resonance

contributions beyond the N� pole (
ffiffiffi
s

p
>MN�). In order to

minimize the number of parameters, we adopt one com-
mon cutoff value for the hadronic form factor for all N�’s.
The Reggeized background is constrained using photo-

production data above the resonance region. In pion
photoproduction [19] the resonance region extends toffiffiffi
s

p � 2:5 GeV. In previous work [20–23], the 72
pð�;KþÞ� data points with

ffiffiffi
s

p
> 3 GeV were employed

to determine the parameters of the Reggeized background.
The CLAS collaboration has recently published
pð�;KþÞ� data for

ffiffiffi
s

p
> 2:5 GeV [24]. The CLAS data

are inconsistent with those collected in the 1960s and
1970s [25]. Similar discrepancies were found in other
pseudoscalar meson photoproduction channels [25]. For
the analysis presented here, we have used a subset of the

recent CLAS data for which 2:6 GeV<
ffiffiffi
s

p
< 2:84 GeV

and kaon center-of-momentum angle cos��K > 0:35 to

constrain the Reggeized background model. By means
of a Bayesian analysis, analogous to the procedure
described in Ref. [20], we have determined the optimal
background model variant which is dubbed Regge-2011.
This background model features rotating phases for both
trajectories, and positive tensor and vector coupling
strengths for the K�þ trajectory. The RPR amplitude is
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constructed from this background model by adding a set of
s-channel contributions.

The challenge at hand is to determine which set of
resonances gives rise to the most probable RPR model
variant M, given the world’s pð�;KþÞ� data of the
last decade, fdkg. The data include 3455 differential cross
sections, 2241 single, and 452 double polarization
observables [9,24,26,27]. The set of resonances can be
determined by evaluating the conditional probability
PðMjfdkgÞ ¼ PðfdkgjMÞPðMÞ=PðfdkgÞ [20,28] for each
model variant M. The factor PðfdkgjMÞ is known as the
Bayesian evidenceZ. The probability ratio of two different
models MA and MB, given the data set fdkg can be
expressed as

PðMAjfdkgÞ
PðMBjfdkgÞ¼

PðfdkgjMAÞ
PðfdkgjMBÞ

PðMAÞ
PðMBÞ¼

ZA

ZB

PðMAÞ
PðMBÞ : (1)

As we have no prior preference for any of the models, the
factor PðMAÞ=PðMBÞ is set to one, and the probability ratio
of Eq. (1) can be expressed in terms of the evidence
ratio (or, Bayes factor) ZA=ZB. The evidence is calculated
by marginalizing over the model’s parameters �M [20,29],

Z¼
Z

Pðfdkg;�MjMÞd�M ¼
Z

Lð�MÞ�ð�MÞd�M: (2)

The prior distribution �ð�MÞ ¼ Pð�MjMÞ is chosen to be
a uniform distribution [28] between �100 and þ100 for
the coupling strengths. This choice is motivated by natural-
ness arguments: coupling strengths of 100 give rise to a
total cross section exceeding 25 �b, thereby overshooting
the measured pð�;KþÞ� by several factors.

The likelihood function Lð�MÞ � Pðfdkgj�M;MÞ is
parametrized by a chi-square distribution. In evaluating
Lð�MÞ, the customary estimate of the total squared error
of a data point is the sum of the squared systematic
and statistical errors: �2

tot ¼ �2
sys þ �2

stat. Because of the

non-Gaussian and correlated nature of the systematic er-
rors, the use of a chi-square distribution underestimates the
real errors and the resulting evidences Z [30]. The total

error is underestimated by
ffiffiffi
2

p
if the two errors are equal.

Furthermore, there are generally at least two different
sources of systematic errors, which are also added quad-
ratically. A more conservative calculation, where the errors
are added linearly, yields as a total error

�0
tot ¼ �stat þ �0

sys � �stat þ
ffiffiffi
2

p
�sys � 1þ ffiffiffi

2
p
ffiffiffi
2

p �tot: (3)

The replacement �tot ! �0
tot boils down to rescaling the

errors in the chi-square distribution with c ¼ 1þ ffiffi
2

pffiffi
2

p . The

bulk of Z is determined by maxfLð�MÞg, so one can
correct for this underestimate by considering the scaling
behavior of the chi-square distribution at �2

min if the error

is multiplied by c. The following relation holds,

ln
Lð�MÞ
L0

cð�MÞ ¼ ðk� 2Þ lnc� �2
Rð�MÞ k2

c2 � 1

c2
; (4)

where L0
cð�MÞ is the chi-square distribution for which

the errors have been multiplied by c. k is the number of
degrees of freedom of the chi-square distribution, i.e., the
number of data points minus the number of free parame-
ters. This results in the following correction for the com-
puted evidence Z of a model,

lnZ0 � lnZ� ðk� 2Þ lncþ �2
R;min

k

2

c2 � 1

c2
; (5)

where �2
R;min is the model’s minimum reduced �2 value.

Jeffreys’ scale [31] associates the logarithm of the
evidence ratio of Eq. (1) with a qualitative statement on
the relative probabilities for two models. It states that a
value of � lnZ ¼ lnðZA=ZBÞ * 1 corresponds with sig-
nificant evidence in favor of the more probable model,

TABLE I. The sets of N�’s included in various pseudoscalar meson photoproduction analyses, compared to the results of this work.
The nomenclature L2I;2JðMN� Þ is used, where L is the orbital angular momentum of the �N partial wave, I is the isospin, J is the spin,

and MN� is the mass of the resonance. The overall PDG ratings are given for each N�. Missing states predicted by constituent quark
models are denoted with m. Along with the P11ð1440Þ and D13ð1520Þ, the N�’s with J � 7=2 are not considered in this work.

Analysis P11

ð1440Þ
D13

ð1520Þ
S11

ð1535Þ
S11

ð1650Þ
D15

ð1675Þ
F15

ð1680Þ
D13

ð1700Þ
P11

ð1710Þ
P13

ð1720Þ
D13

ð1900Þ
P13

ð1900Þ
P11

ð1900Þ
F15

ð2000Þ
J � 7=2

???? ???? ???? ???? ???? ???? ??? ??? ???? m ?? m ???

RPR-2011 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B-G [4] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EBAC-DCC [5] ✓ ✓ ✓ ✓ ✓

Gent-Isobar [6] ✓ ✓ ✓ ✓

Giessen [7] ✓ ✓ ✓ ✓

KaonMAID [8] ✓ ✓ ✓ ✓

RPR-2007 [9] ✓ ✓ ✓ ✓ ✓

Saclay-Lyon [10] ✓ ✓ ✓

SAID [11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

US/SSL [12,13] ✓ ✓ ✓ ✓ ✓ ✓ ✓
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whereas a value smaller than 1 is barely worth mentioning.
A value larger than 2.5 is strong to very strong, and a value
of 5 and larger is decisive. This scale is employed to decide
which resonance set describes the pð�;KþÞ� data best
with the RPR model.

The numerical evaluation of Eq. (2) is very cumber-
some, as the bulk of the likelihood Lð�MÞ is usually
concentrated in a very small region of the multidimen-
sional parameter space. Therefore, we adopt a numerical
procedure which includes different steps. First, we employ
a genetic algorithm to locate the global optimum in the
likelihood hypersurface. Next, the covariance matrix about
the optimum is determined using the MINOS routine in
ROOT’s MINUIT package [32]. Finally, the VEGAS algorithm

[33] is adopted to calculate the evidence integral within the
error boundaries determined by MINOS. This localized
integration yields a first estimate for the evidence Z. As
we are dealing with 6148 data points, the likelihood is apt
to be unimodal and peaked in a small region in parameter
space. Moreover, the chi-square distribution Lð�MÞ falls
off very steeply with increasing �2. Therefore, the volume
about the global maximum in the likelihood surface effec-
tively represents the bulk of the integral.

We have evaluated the evidence integralZ0 for all model
variants corresponding to combinations of the nucleon
resonances listed in Table I. We consider established
resonances, for which substantial experimental evidence
exists: S11ð1535Þ, S11ð1650Þ, D15ð1675Þ, F15ð1680Þ,
D13ð1700Þ, P11ð1710Þ, and P13ð1720Þ. The less-established
P13ð1900Þ [5,7] and F15ð2000Þ resonances are also
included. The P11ð1440Þ and D13ð1520Þ, which have
masses significantly below threshold, are not considered
in our single-channel formalism. We include the ‘‘miss-
ing’’D13ð1900Þ and P11ð1900Þ resonances. Both have been
identified by at least one analysis as contributing to the
Kþ� channel [5–8]. In a single-channel reaction model it
is customary to introduce N� propagators with a single
pole in the complex plane. Thereby, the dynamical origin
of the N� [14] is approximated by an effective mass
and width. We have adopted the PDG values for the
Breit-Wigner masses and widths if available.

We consider all possible combinations of the 11 pro-
posed resonances, which yields 2048 model variants. In
Fig. 1, the computed evidence values � lnZ0 are displayed
in the evidence map of the RPR model space. The number
of free parameters per resonance is 1 for spin-1=2 and 2 for
higher-spin resonances. Points in the same column repre-
sent model variants that have the same number of free
parameters, but have a different selection of resonances.
This figure illustrates that increasing the number of
N� parameters does not necessarily result in an improved
evidence. The lnZ0 does improve by almost 2 orders of
magnitude by including N�’s.

The model with the highest evidence value has 14 N�
parameters and features the resonances S11ð1535Þ,

S11ð1650Þ, F15ð1680Þ, P13ð1720Þ, D13ð1900Þ, P13ð1900Þ,
P11ð1900Þ, and F15ð2000Þ. This model is dubbed RPR-
2011. A comparison with the second-best model, which
has 12 N� parameters and does not feature the missing
D13ð1900Þ resonance, yields a difference of � lnZ ¼ 2:3,
corresponding with significant to strong evidence in favor
of the RPR-2011 model.
A selection of the pð�;KþÞ� differential cross sections

and recoil polarizations P as calculated by the RPR-2011
model and the Regge-2011 background model are pre-
sented in Fig. 2. The figure illustrates that while the dif-
ferential cross section is dominated by the background
amplitude, polarization observables can be highly sensitive
to N� contributions. The highest sensitivity to the N�
contributions can be observed at backward kaon angles ��K.
We use the 2048 evidences of Fig. 1 to determine the

conditional probability of the individual resonances, given
the 6148 measured pð�;KþÞ� observables,

PðRjfdkgÞ ¼
X

MijR2Mi

PðfdkgjMiÞ PðMiÞ
PðfdkgÞ ; (6)

where the summation includes the n model variants Mi

containing R. The second factor on the right-hand side,
PðMiÞ=PðfdkgÞ, is equal for all models Mi, so it drops out
of the probability ratio PðR1jfdkgÞ=PðR2jfdkgÞ of two
resonances.
The results of Eq. (6) withPðMiÞ=PðfdkgÞ set equal to 1=n

are shown in Fig. 3. This reveals that the resonances which

FIG. 1 (color online). The evidence values of the 2048 model
variants in the RPR model space (blue circles), as a function of
the number of free N� parameters. The smaller the value of
� lnZ0 the higher the evidence. The best model for a fixed
number of parameters is indicated with a red square, the overall
best model (RPR-2011) with an open circle. Top right inset:
evidence ratios relative to RPR-2011 � lnðZ0

i=Z
0
RPR-2011Þ for the

models with the lowest � lnZ0. The color coding refers to
Jeffreys’ scale: barely worth mentioning (orange), significant
(yellow), strong to very strong (green) and decisive (white).
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have the highest probability of contributing topð�;KþÞ� are
those that constitute the resonance set of RPR-2011. This set
features the three resonances with a mass around 1900 MeV
that are predicted by constituent quarkmodels [1], but not by
quark-diquark models [2]. Moreover, we find no significant
contribution of the P11ð1710Þ resonance to the pð�;KþÞ�
reaction. In the latest SAID analyses [11,34], this resonance
was not needed for the description of �N scattering either.
TheP11ð1710Þ’s negligible coupling to�N and its absence in
reactions where the ��N channels are not relevant can be
attributed to it being a resonance in the ��N system [35].

Summarizing, we have addressed the issue of investigat-
ing the resonance content of pð�;KþÞ�. This channel is
known to receive large nonresonant contributions which
complicates the extraction of N� information. The
nonresonant dynamics can be effectively handled in a
Regge formalism with a mere three parameters
and two phases. The efficiency of the RPR model has

enabled us to perform a Bayesian analysis. From a pro-
posed set of 11 N�’s, we have identified the 8 N�’s with a
high conditional probability of contributing to pð�;KþÞ�.
Bayesian inference has the power to reduce the bias in

identifying the N� content in more advanced reaction
models, but its dimensional curse leads to computational
hurdles which cannot be overcome to date.
This research was financed by the Flemish Research

Foundation (FWO Vlaanderen). The calculations were
carried out on the Stevin Supercomputer Infrastructure
at Ghent University, funded by Ghent University, the
Hercules Foundation, and the Flemish Government—
department EWI.
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