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We suggest a mechanism whereby the three generations of quarks and leptons correspond to surface

modes in a five-dimensional theory. These modes arise from a nonlinear fermion dispersion relation in the

extra dimension, much in the same manner as fermion surface modes in a topological insulator or lattice

implementation of domain wall fermions. We also show that the topological properties can persist in a

deconstructed version of the model in four dimensions.
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Introduction.—It remains a mystery why there are three
particle generations in the standard model and why they
have the observed pattern of masses and mixing angles,
despite many attempts at explanation, experimental evi-
dence for flavor physics beyond the standard model being
limited to neutrino masses. The smallness of neutrino
masses and the absence of flavor-changing neutral currents
and electric dipole moments all suggest that the origin of
flavor lies enigmatically at a very short distance. A well-
explored theoretical program is to assume the existence of
three generations and guess at textures for the mass matri-
ces, which can be justified by a hierarchy of flavor sym-
metry breaking—an ambiguous exercise, given the lack of
experimental flavor probes in the right-handed fermion
sector. After pioneering work involving Abelian flavor
symmetries [1], numerous models were also introduced
with non-Abelian flavor symmetries possessing three-
dimensional irreducible multiplets to justify the existence
of three generations of quarks and leptons. While this
general approach can boast of qualitative successes, no
models have emerged that are particularly compelling.

Composite and extra dimension models are a natural
place to look for an explanation for flavor and the number
of generations: both generically contain towers of states,
and one can arrange that only three generations are light.
Composite models must typically rely on gauge dynamics
to explain the origin of three generations, as in Ref. [2],
while extra dimension models often rely on the Dirac
equation, having three zero modes in certain background
fields of nontrivial topology; see Refs. [3–5]. In composite
models, the Yukawa matrices of the standard model are due
to complex interactions between constituents and at best
their texture can be predicted; in extra dimension models,
the Yukawa matrices can be computed from wave function
overlap integrals in the transverse space (see, for example,
[3–14]). To the extent that a gauge-gravity duality pertains,
it is possible that these two very dissimilar descriptions
could be related.

In this Letter, we consider an interesting phenomenon
observed with lattice domain wall fermions, where the
number of massless fermions bound to the surface of a

semi-infinite fifth dimension depended discontinuously on
the fermion dispersion relation and hence on coupling
constants in the action [15,16]. It was subsequently shown
that the number of light ‘‘families’’ could be understood as
a topological property of the five-dimensional (5D) fer-
mion dispersion relation in momentum space [17]. That is
because the number of 4D massless surface modes is
directly related to the quantized coefficient of the Chern-
Simons operator obtained by integrating out the heavy bulk
fermions, following the analysis in Ref. [18], and this
coefficient is obtained from a one-loop Feynman diagram
which computes a momentum-space winding number as-
sociated with the fermion propagator. This phenomenon
was first discussed in the classification of fermion modes in
liquid helium [19] and is the same phenomenon that de-
fines topological insulators [20–22]. We consider here that
the replication of quark and lepton families we observe in
the standard model arises in such a manner (see [23] for
related speculations); an attractive feature of the mecha-
nism is that, while the number of light families is deter-
mined topologically, their transverse wave functions in the
extra dimension are all different and dynamically deter-
mined, allowing interesting mass mixing without overly
restrictive family symmetries. As topology in momentum
space depends on the large momentum behavior of the
fermion dispersion relation, such models are forced to
confront UV physics and cannot simply rely on an effective
field theory description. Therefore, after describing the
general mechanism and providing a phenomenological
toy example, we look at various UV completions that can
give rise to a well-defined low energy theory.
Multiple zero modes.—We start by considering fermions

in 5D, with an inverse Euclidian propagator which respects
4D Lorentz invariance

iG�1ðp�; p5Þ ¼ iZ�ðpÞ�� þ iZ5ðp5Þ�5 � �ðp; p5Þ; (1)

corresponding to a plane wave uðpÞ expðipax
aÞ, where

pa ¼ fp�; p5g is the five-momentum and u is a Dirac

spinor. We assume Hermitian gamma matrices, with Z�

and Z5 being real, odd functions of momentum and � a
real, even function, so that G�1 corresponds to Hermitian
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derivative interactions in the fermion action. G�1 will
typically have one or more zeros for real p�, some com-
plex value for p5, and a u spinor which is an eigenstate of
�5. For the generic case=½p5� � 0, this pole inG implies a
wave function growing exponentially in one of the x5
directions; because of the symmetry of Z and � under
p5 ! �p5, if there is a chiral solution to G�1 ¼ 0 with
one sign for =½p5�, there is also a solution with the oppo-
site chirality and the opposite sign for =½p5�. Such solu-
tions are not normalizable; however, if translation
invariance in x5 is destroyed, either by a boundary or
explicit localized x5 dependence in the action, it is possible
that some chiral solutions are normalizable and retained in
the Hilbert space—confined to the boundary or defect—
while modes of the opposite chirality remain non-
normalizable and are discarded. The result is an effective
4D theory at low energy with chiral fermions; this is just a
generalization of the domain wall fermion zero mode
discovered by Jackiw and Rebbi [24]. If there are multiple
solutions to G�1 ¼ 0, then the 4D theory will have mul-
tiple families, distinguished by different transverse wave
functions in the extra dimension. While these wave func-
tions will depend continuously on parameters in the 5D
Lagrangian, the number of families can only depend dis-
continuously on those parameters; this makes the number
of families look like a topological number, as indeed it is
[17]. For example, for 5D lattice domain wall fermions,
one finds � ¼ ½mþ r

P5
a¼1ðcospa � 1Þ�, Za ¼ sinpa, r

being a free parameter. It was shown in Ref. [16] that,
when the extra dimension is made semi-infinite, chiral zero
modes exist at the boundary, where the number of families
jumps through the binomial coefficients f1; 4; 6; 4; 1g as the
ratio (m=r) is tuned through multiples of two, alternating in
chirality with each jump. We suggest here that the three
families observed in nature might arise in such a manner.

A toy model.—For a toy model with three generations,
we start with the simple and unjustified assumption that the
dispersion relation Eq. (1) is given by

iG�1 ¼ p��
� þ ip5ð1þ c1p

2
5Þ�5 �mð1þ c2p

2
5Þ; (2)

wherem, c1, and c2 are real and chosen so that, for p� ¼ 0,

G�1 has three roots, all of a given chirality, occurring at
p5 ¼ i�, with �1 ¼ a, �2 ¼ ðbþ icÞ, and �3 ¼ ðb� icÞ,
where a, b, and c are real, positive numbers. These three
roots correspond to transverse wave functions for the zero
modes of the form �iðyÞ ¼ expð��iyÞ. For now, we con-
sider the extra dimension to be semi-infinite and we ignore
gravity.

Expanding the 5D fields in this nonorthonormal set of
transverse zero mode wave functions yields the low
energy 4D theory with off-diagonal kinetic terms,

Zijc
y
i D��

�c j, where c iðxÞ is the chiral spinor associ-

ated with the ith zero mode, i; j ¼ 1; 2; 3, and the wave
function mixing matrix Z is given by the overlap of
transverse wave functions,

Z ij ¼
Z 1

0
dy��

i ðyÞ�jðyÞ ¼ 1

��
i þ �j

: (3)

4D gauge invariance requires there to be a y-independent
mode for the W bosons, and so weak currents and Z will
both be diagonal in the flavor basis. This is more apparent
if one discretizes the extra dimension and considers it as a
flavor index, so y independence of the W is equivalent to
the statement that the W couples to each flavor in the UV
theory with the same coupling constant.
The natural starting point for construction of a low

energy description of the world is to assume one Dirac
field in the 5D theory for each Weyl field of the standard
model: Q, U, D, L, and E, with SUð3Þ � SUð2Þ �Uð1Þ
quantum numbers ð3; 2Þ1=6, ð3; 1Þ2=3, ð3; 1Þ�1=3, ð1; 2Þ�1=2,

and ð1; 1Þ�1, respectively. We assume that Q and L only
have left-handed chiral zero modes qi and ‘i, while U, D,
and E have only right-handed zero modes, ui, di, and ei.
These fields can then couple to the Higgs field in the 5D
theory as �UHQ, etc. (Alternatively, one could replace U,
D, and E by conjugate fields Uc, Dc, and Ec, with Higgs
couplings UcHC5Q, etc., where C5 is the 5D charge con-
jugation matrix, and assume a 5D dispersion relation where
all zero modes are left-handed.)
A problem with the above implementation is that, with a

single Yukawa coupling for each 5D field, it is not possible
to include weak CP violation. We therefore make the
Higgs sector the origin of CP violation in the UV theory,
which requires introducing additional scalars. We assume a
two-doublet model with a relative CP-violating phase in
their vacuum expectation values (vevs) arising from ex-
plicit CP violation in the Higgs potential. To avoid large
flavor-changing neutral currents, the theory is given a
discrete symmetry (softly broken) to ensure that Hu and
Hd couple solely to up-type and down-type quarks, respec-
tively [25]. Furthermore, we must assume that these are
bulk fields and that Higgs vacuum expectation values are
y-dependent; this is the same model and mechanism com-
monly used to introduce CP-violating bubble walls in
theories of electroweak baryogenesis [26]. The Yukawa
interactions of the quarks in the 5D theory are given by
yU �UHuQþ yD �DHdQþ H:c: In principle, there could be
higher derivative Yukawa-like interactions, but we assume
they are zero at the UV scale.
As with the fermion zero modes, we assume an expo-

nential form for the 5D profile of the Higgs vevs. By means
of a hypercharge gauge transformation, we can make the
Hd vev to be real and put all the CP-violating phases into

the Hu: hHdi ¼ ve�y sin� and hHui ¼ ve�ðhrþihiÞy cos�,
where we have chosen the scale of the coordinate y so
that the exponent in the profile of hHdi equals one, while
the real parameters hr and hi characterize the profile
of hHui. Integrating over the coordinate y then gives rise

to conventional 4D mass matrices, such as ½MU�ab /
ðyUv cos�=

ffiffiffi
2

p Þð�Q;a þ �U;b þ hr þ ihiÞ�1.
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In our model, we choose Higgs couplings to the leptons
of the form

yE �L ~HuEþ 1

�
ðL ~HdÞTC5ðL ~HdÞ þ H:c:; (4)

where ~H ¼ �2H
�; � has dimensions of mass and controls

the size of the resulting Majorana neutrino masses. After
integrating over the coordinate y, the Yukawa interactions
give rise to mass matrices which are simple functions of the
phenomenological � parameters; from these and the wave
function matrices Eq. (3), it is straightforward computation
to determine all the masses and mixing angles.

The point of this toy model is not to present a full theory
of 5D physics but only to see whether a model based on this
topological insulator mechanism could agree with experi-
mental data on flavor physics to high accuracy. The model
described has 21 real parameters: a, b, and c for the Q, U,
D, L, and E fields; hr and hi for hHui; the three Yukawa
couplings yU, yD, and yE; and the scale � characterizing
the neutrino coupling to the Higgs field. These are fit to 18
data: the nine quark and charged lepton masses, three
mixing angles and one phase, two neutrino �m2 values,
and three neutrino mixing angles. Ignoring uncertainties in
the data, in general one would expect some number of
disconnected three-dimensional manifolds in parameter
space where the model agrees with all the data—that
number possibly being zero; lower dimensional spaces of
solutions would generally require fine tuning. In searching
for solutions, we ignore radiative corrections in our model
(such as running of the Yukawa couplings and masses or
radiative generation of higher derivative operators) and fit

the parameters to data currently available from the Particle
Data Group [27], augmented with recent evidence for non-
zero �13 in the neutrino sector [28,29].
One might think that this model, with more parameters

than data, could not be predictive. However, when we
numerically map out the manifold of solutions consistent
with the data (including experimental and theoretical errors
quoted in the Particle Data Group), we find that (i) we
always get a normal, nondegenerate hierarchy, with m3 in
the narrow range 0:048 eV�m3�0:051 eV, (ii) solutions
do not favor maximal mixing for �2 � �3, and (iii) we find
J� in the narrow range �0:023 � J� � �0:014. What has
happened is just that the three-dimensional manifold of
predictions from this constrained model maps onto a nar-
row range of physical properties, so that it is in fact some-
what predictive. Nevertheless, one would like to
understand how to construct a model which is both more
predictive and well-defined in the UV.
UV completion: Little flavor.—A general method for

constructing a UV completion for extra dimension models
is to discretize the extra dimensions while keeping the 4D
world continuous (deconstruction) [30,31]. In such an
approach, the extra coordinate for bulk fermions essen-
tially becomes a flavor index. A 4D deconstructed version
of a free theory with a dispersion relation similar to Eq. (2)
is readily obtained by discretizing an infinite extra dimen-
sion with a defect at site n ¼ 0. In this case, we have an
infinite number of flavors of 4D fermions with the mass
matrix Lm ¼ ð �c LMc R þ H:c:Þ, where M is an infinite
matrix representing the fifth-dimensional differential op-
erator. For example,

ðMvÞn ¼

8>><
>>:

ðcvn�3 þ bvn�2 þ avn�1 þ vnÞ n < 0

½ðcv�3 þ bv�2 þ av�1 þ v0Þ þ ðv0 þ av1 þ bv2 þ cv3Þ� n ¼ 0

ðvn þ avnþ1 þ bvnþ2 þ cvnþ3Þ n > 0

(5)

has the solution Mv ¼ 0 with vn ¼ xjnj, where x is any of
the three roots of the equation 1þ axþ bx2 þ cx3 ¼ 0.
The vector is normalizable if jxj< 1, and three normal-
izable zero modes may be found over a range of parameters
a, b, and c. The topological nature of the underlying theory
is manifested by the fact that the number of normalizable
zero mode solutions does not change with small local
excursions of M away from the above form. When such a
system is gauged, however, the gauge fields couple to an
infinite number of flavors in such a theory, and so the
theory has a Landau pole and is ill-defined. To cure this,
one must work with a finite discretized extra dimension.

With finite continuous extra dimensions, both exponen-
tially growing and falling zero mode solutions are normal-
izable, and to obtain a chiral theory one must perform an
orbifold projection [32,33]. A well-known example is to
compactify the extra dimension as a circle parametrized by
� 2 ½�	;	Þ, with the action respecting a Z2 symmetry

c ð�Þ ! �5c ð��Þ. This symmetry requires mass terms to
be odd in �, and so domain wall defects exist at the fixed
points of the reflection, � ¼ 0 and � ¼ 	, where the zero
modes of opposite chirality are located, and projecting out
modes which are either even or odd under this Z2 will
result in a chiral theory. A true UV completion of our
topological insulator model for families is possible if a
discretized version of this orbifold projection exists and is
compatible with the survival of multiple chiral zero modes.
In this case, M is a finite dimensional matrix, and we
assume the action respects a Z2 symmetry c ! �5Rc ,
where R is the ‘‘reflection’’ operator in flavor space with
R2 ¼ 1. It is possible to prove an index theorem

ðN �
L �N �

R Þ ¼ �ðN þ
L �N þ

R Þ ¼ TrR; (6)

where N �
L is the number of left-handed zero modes of M

with Z2 charge �1 and N �
R is the same for right-handed

zero modes. Evidently, we would like jTrRj ¼ 3 to obtain
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three chiral families, ruling out discretization of the Z2

orbifold of a circle and leading us to consider instead the
discretization of an extra dimension consisting of two
circles sharing a point. A simple example is the seven-
site lattice shown in Fig. 1, where we take Lm to be

�L1ðR2 � R7Þ þ �L2ðR3 � R1Þ þ �L3ðR4 � R2Þ
þ �L3ðR7 � R6Þ þ �L4ðR5 � R3Þ þ �L6ðR3 � R5Þ
þ �L7ðR1 � R3Þ þ H:c:; (7)

where Li and Ri are c L and c R, respectively, at site i. This
has the simple interpretation of hopping terms for fermions
around the circles, with fermions at the shared point (site 3)
being able to hop onto either circle. In this example, R
reflects sites about the horizontal axis in Fig. 1 and the
action is invariant under c ! �5Rc . The theory has three
massless Dirac fermions, and, if we project out all states
with negative Z2 charge, then we are left with three left-
handed zero modes. The important point of this model is
not that M has three zero mode solutions but that the zero
modes persist even if M is perturbed in any random way
which respects the Z2 symmetry—although the eigenvec-
tors (‘‘transverse wave functions’’) will be altered under
this perturbation—exactly as one would expect from the
topological origin of this model.

This mechanism, in general—and the deconstructed
model, in particular—naturally suggests a number of in-
teresting directions to pursue, most interestingly whether it
imposes inescapable constraints on Higgs and CP physics
that might be probed by the LHC, as well as observable
flavor-changing neutral currents or lepton flavor violation,
which would be characterized by the scale of the extra
dimension [34].
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