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Anomalous transport in one-dimensional translation invariant Hamiltonian systems with short range

interactions is shown to belong in general to the Kardar-Parisi-Zhang universality class. Exact asymptotic

forms for density-density and current-current time correlation functions and their Fourier transforms are

given in terms of the Prähofer-Spohn scaling functions, obtained from their exact solution for the

polynuclear growth model. The exponents of corrections to scaling are found as well, but not so the

coefficients. Mode coupling theories developed previously are found to be adequate for weakly nonlinear

chains but in need of corrections for strongly anharmonic interparticle potentials. A simple condition is

given under which Kardar-Parisi-Zhang behavior does not apply, sound attenuation is only logarithmically

superdiffusive, and heat conduction is more strongly superdiffusive than under Kardar-Parisi-Zhang

behavior.
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Since the discovery by Alder and Wainwright [1] of
long-time tails in the Green-Kubo current-current time
correlations, such as the velocity autocorrelation function,
it has been clear that transport in one- and two-dimensional
Hamiltonian systems must be anomalous in most cases.
One-dimensional systems have been studied extensively in
the past decades, both by mode coupling techniques [2–5]
and dynamical scaling [6] and also by computer simula-
tions [2–5,7]. Most studied are the exponents � describing
the divergence of the coefficients of heat conduction and
sound damping with system size L as L�, and � describing

the power law t�ð1��Þ by which the corresponding current-
current time correlation functions decay. For both expo-
nents various values have been proposed, with � ¼ 1=3 for
both heat conduction and sound attenuation and � ¼ 1=3
for heat conduction but 1=2 for sound attenuation being the
most common ones in recent publications.

Here I will argue that for generic Hamiltonian systems
the long-time behavior of the dynamics can be obtained
exactly in terms of the scaling functions obtained by
Prähofer and Spohn [8] for the polynuclear growth model,
which is in the Kardar-Parisi-Zhang (KPZ) universality
class. The values of � and � mentioned above are con-
firmed. But also the coefficients of size-dependent trans-
port coefficients and long-time current-current correlation
functions are obtained exactly, as well as the scaling func-
tions describing, among other things, the asymptotic be-
haviors of the various density-density time correlation
functions and their Fourier transforms. These results hold
in all generality, for generic short-ranged 1D Hamiltonians,
from weakly anharmonic chains up to mixtures of hard
points. They establish a rare example of exact results that
may be obtained for nonintegrable Hamiltonian systems
out of equilibrium. In addition, the special conditions
under which such systems do not belong to the KPZ
universality class will be formulated simply and sharply,

together with the consequences for long-time and short-
wavelength behavior.
More specifically, I will discuss classical one-

dimensional N-particle systems described by a translation
invariant Hamiltonian with short range interactions and
periodic boundary conditions. Following one of the
ground-laying papers by Ernst, Hauge, and Van Leeuwen
(EHvL) [9], I will assume that all slow variables of rele-
vance for the long-time behavior of hydrodynamics and
related time correlation functions are the long-wavelength
Fourier components of the densities of conserved quanti-
ties, i.e., particle number, momentum, and energy, plus
products of these. This is a crucial assumption. It is not
satisfied for most exactly solvable models, which have
additional slow modes, such as solitons [10]. For one-
and two-dimensional systems, the method of EHvL has
to be generalized somewhat: Instead of assuming that the
time correlation functions of hydrodynamic modes decay
exponentially with time, one has to write down the mode
coupling equations as a set of coupled nonlinear equations
for these correlation functions that must be solved self-
consistently [2–4].
EHvL define the hydrodynamic modes to leading

order in the wave number k as linear combinations
of the Fourier transforms of the microscopic densities

of particles, momentum, and energy [11]: ��ðk; tÞ ¼PN
j¼1 M

�
j expð�ikxjÞ � �k0hM̂ðk ¼ 0Þi, with M�

j ¼ 1,

pj, and ej for the particle density nðk; tÞ, the momentum

density gðk; tÞ, and the energy density eðk; tÞ, respectively
[12]. The hydrodynamic modes are two sound modes [14]
a1ðk; tÞ and a�1ðk; tÞ and a heat mode aHðk; tÞ, given,
respectively, to leading order in k by

a�ðk; tÞ ¼ �

2�

� �
1=2½c�1

0 pðk; tÞ þ �gðk; tÞ�; (1)
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aHðk; tÞ ¼ �

nTCp

 !
1=2

½eðk; tÞ � hnðk; tÞ�: (2)

Here, � ¼ �1, T is the equilibrium temperature, n is the
equilibrium number density, and � ¼ nm; Cp ¼
Tð@s=@TÞp is the specific heat per particle at constant

pressure p, with s the equilibrium entropy per particle;

c0 ¼ ð@p=@�Þ1=2s is the adiabatic sound velocity in the
limit of zero wave number, and h is the equilibrium en-
thalpy per particle. Furthermore,

pðk; tÞ ¼ ð@p=@eÞneðk; tÞ þ ð@p=@nÞenðk; tÞ

¼ �� 1

�T
eðk; tÞ þ ð@p=@nÞenðk; tÞ; (3)

where � ¼ Cp=Cv is the specific heat ratio and � ¼
�n�1ð@n=@TÞp the thermal expansion coefficient. The

allowed values of k are of the form k ¼ 2�n
L . To leading

order in k, the hydrodynamic modes are normalized under
the inner product ðf; gÞ ¼ 1

L hf�gi, with h i a grand canoni-

cal equilibrium average.
The time correlation functions of the hydrodynamic

modes satisfy linear equations involving memory kernels,
viz.

@Ŝ�ðk;tÞ
@t

¼�i�c0kŜ�ðk;tÞ�k2
Z t

0
d	M̂�ðk;	ÞŜ�ðk;t�	Þ;

(4)

@ŜHðk; tÞ
@t

¼ �k2
Z t

0
d	M̂Hðk; 	ÞŜHðk;t�	Þ: (5)

Here Ŝ�ðk; tÞ ¼ ða�ðk; 0Þ; a�ðk; tÞÞ, etc. The memory ker-
nels may be expressed through a diagrammatic mode
coupling expansion as a sum of irreducible skeleton dia-
grams [15]. These consist of propagators, representing

stationary density correlation functions Ŝ
 ð‘; t�Þ, and ver-

tices, representing the coupling of one propagator Ŝð‘; t�Þ
to two propagators Ŝ�ðq; t�0 Þ and Ŝ�ð‘� q; t�00 Þ, with cou-

pling strength ‘W
��

 . For the long-time dynamics, only a

few of these 27 couplings are important; only couplings to
two sound modes of the same sign or to two heat modes
may give rise to long-lived perturbations; all other combi-
nations of pairs of modes rapidly die out through oscilla-
tions. From EHvL [9] the relevant nonvanishing coupling
strengths to leading order in k can be obtained as

W��
� ¼ �

ð2��Þ1=2c0
@c0n

@n

� �
s

(6)

W����
� ¼ �

ð2��Þ1=2
�
1

c0

@c0n

@n

� �
s
� 2

�� 1

�T

�
; (7)

WHH
� ¼ ��ð�� 1Þ

ð2��Þ1=2nCp

@

�
nCp

�

�
@T

0
BB@

1
CCA

p

; (8)

W��
H ¼ �k1=2B c0

ðnCpÞ1=2
: (9)

Now a central observation is the following: Because of the
first term on the right-hand side of Eq. (4), the sound-sound
correlation functions will have their weights centered
around the positions xðtÞ ¼ xð0Þ � c0t; in other words,

these functions will assume the forms Ŝ�ðk; tÞ ¼
expð�i�c0ktÞ�̂�ðk; tÞ, with �̂�ðk; tÞ to a first approxima-
tion real nonoscillating functions. As a consequence, the

mode coupling contributions to M̂� are dominated by those
diagrams in which all vertices are of the type V��

� (but only
in the limit k ¼ 0 diagrams in which the first and last
vertices are of type V����

� and all the other ones of type
V������ also contribute to the leading order). All other
contributions for at least some time will oscillate out of
phase with the angular frequency �c0k of the sound mode
under consideration. The remaining contributions, espe-
cially so if described in a coordinate frame comoving at
the speed of sound, can be identified with the terms in a
similar mode coupling expansion for the fluctuating
Burgers equation [16]:

@�ðx; tÞ
@t

¼ �

2

@�2

@x
þD

A

@2�

@x2
þ @


@x
; (10)

with A ¼ ŜBð0; 0Þ, with the density-density time correla-

tion function ŜBðk; tÞ defined, in the limit L ! 1, as

Ŝ Bðk; tÞ ¼
Z 1

�1
dxe�ikxSBðx; tÞ

�
Z 1

�1
dxe�ikxh�ð0; 0Þ�ðx; tÞi

and 
ðx; tÞ representing Gaussian white noise with
h
ðx; tÞ
ðx0; t0Þi ¼ 2D�ðx� x0Þ�ðt� t0Þ. The brackets de-
note an average over the stationary distribution of the
density field. This is similar to the hydrodynamic equa-
tions, but simpler, because there is only one conservation

law. The function ŜBðk; tÞ satisfies an equation similar to
Eqs. (4) and (5), of the form

@ŜBðk; tÞ
@t

¼ �k2
Z t

0
d	M̂Bðk; 	ÞŜBðk; t� 	Þ: (11)

The mode coupling expansion for this memory kernel has
exactly the same structure as the set of dominant terms for
the sound mode memory kernel; all propagators corre-
spond to the same type of correlation function, and all
vertices carry the same weight factor W, in the case of

the Burgers equation given by WB ¼ �
ffiffiffiffi
A

p
.
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From their exact solution of the polynuclear growth
model [8], Prähofer and Spohn obtained exact expressions
for the long-time, respectively, small frequency behavior of

the function ŜBðk; tÞ and its temporal Fourier transform
~SBðk;!Þ. In the infinite system limit, L ! 1, these are
of the form [17]

Ŝ Bðk; tÞ ¼ Af̂PS½ð2A�2t2Þ1=3k�; (12)

~S Bðk;!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

2�2jkj3
s

f
�
PS

!

ð2A�2Þ1=2jkj3=2
 !

; (13)

with the functions f̂PS and f
�
PS defined in Eqs. (5.3) and

(5.7) of Ref. [8]. From Eq. (11), one may obtain expres-
sions for the memory kernel in terms of these scaling
functions. For the full Fourier transform, one obtains

~MBðk;!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2A�2

p
MPS

�
k;

!ffiffiffiffiffiffiffiffiffiffiffi
2A�2

p
�
; (14)

with

~M PSðk;!Þ ¼ i!

k2
þ
� ffiffiffi

k
p

f
�þ
PS

�
!

jkj3=2
���1

; (15)

where f
�þ
PSðwÞ �

R1
0 d	 expðiw	Þf̂PSð	2=3Þ.

The corresponding expressions for the long-time behav-
ior of the sound modes at nonvanishing k are

Ŝ �ðk; tÞ ¼ expð�i�c0ktÞf̂PS½ð
ffiffiffi
2

p
VstÞ2=3k�; (16)

M̂ �ðk; tÞ ¼ 2V2
s expð�i�c0ktÞM̂PSðk;

ffiffiffi
2

p
VstÞ; (17)

with Vs ¼ W��
� .

Next, I consider the wave number dependent sound
damping constant �ðkÞ � 2 ~M�ðk; 0Þ and define the sound
currents as

Ĵ �ðk; tÞ ¼ �

2�

� �
1=2
�
�Ĵlðk; tÞ þ �� 1

�Tc0
ĴHðk; tÞ

�
;

where Ĵlðk; tÞ and ĴHðk; tÞ are the longitudinal current and
the heat current [9], denoted by EHvL as Jl and J�,
respectively. Equation (5.11) of Ref. [8] can now be used
to obtain the leading small-k behavior of �ðkÞ and long-

time behavior of hĴ�ð0; 0ÞĴ�ð0; tÞi as

�ðkÞ ¼ 8

19:444

ffiffiffiffiffiffiffiffiffi
2V2

s

jkj

s
; (18)

1

L
hĴ�ð0; tÞĴ�ð0; 0Þi ¼

2:1056½V2
s þ V2

s0 �
2
ffiffiffi
3

p
�Eð1=3Þ

1ffiffiffi
2

p
Vsjtj

 !
2=3

;

(19)

with �E Euler’s gamma function [18] and Vs0 ¼ W����
� .

The leading higher order corrections are obtained by
replacing in the diagrammatic expansion of the memory

kernel just one pair of vertices of type V��
� by vertices of

type V����
� or VHH

� . One easily shows that all these terms

add contributions proportional to jkj�1=3 to �ðkÞ and con-

tributions proportional to t�7=9 to the current-current cor-
relation function. Since there are infinitely many such
contributions, there seems to be no straightforward way
of determining the coefficients exactly. However, estimates
based on the simplest contributing diagrams can be made
[13]. Further corrections obtain from terms with 4, 6, . . .
vertices of type V����

� or VHH
� . Each of these appears

to be of the form Ck�� for �ðkÞ and Dt�� for the
current correlation function, with C and D constants and
� and � of the form � ¼ 1=3�P1

j¼2 mjð2=3Þj and

� ¼ 2=3þP1
j¼2 2njð2=3Þj, respectively, with mj and nj

natural numbers. Again, for each exponent there is an
infinity of contributing terms.

The leading long-time behavior of ŜHðk; tÞ is determined

in a similar way by the sum of all contributions to M̂Hðk; tÞ
where the first and last vertices are of type V��

H and all
other vertices are of type V��

� , all with the same value of�.
These terms do contain an oscillating factor expð�i�c0ktÞ,
but these oscillations are much slower than the oscillations
in any of the other terms. Since we have to include the

contributions to M̂H of either sign of �, we cannot express

ŜH directly in terms of the Prähofer-Spohn scaling func-
tions, but we can do so immediately for the memory kernel.
A simple analysis yields to leading order

M̂ Hðk; tÞ ¼ 2V2
H cosð�c0ktÞM̂PSðk;

ffiffiffi
2

p
VstÞ; (20)

with VH ¼ jW��
H j. For the k-dependent heat conduction

coefficient and the heat current time correlation function,
this leads to the expressions

�ðkÞ ¼ nCpDTðkÞ ¼ nCp

2:1056

2

V2
H

Vs

Vs

2c0jkj
� �

1=3
; (21)

1

L
hĴHð0; tÞĴHð0; 0Þi ¼

nCp

kB�
2
V2
H

2:1056ffiffiffi
3

p
�Eð1=3Þ

1ffiffiffi
2

p
Vsjtj

 !
2=3

:

(22)

The heat mode correlation function in Fourier representa-
tion is given to leading order by

~SHðk;!Þ ¼ 1

�i!þ 2k2V2
H

P
�

~MPSðk; !��c0kffiffi
2

p
Vs

Þ þ c:c: (23)

From this expression and the asymptotic forms of the
Prähofer-Spohn scaling functions [8], one immediately
finds the long-time behavior of the heat-heat correlation
function for fixed k as

Ŝ Hðk; tÞ ¼ exp½�k2DTðkÞjtj�: (24)

Higher order corrections may be obtained in similar way as
for the sound modes.
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The dynamic structure factor ~Sðk;!Þ, i.e., the spatio-
temporal Fourier transform of the density-density time
correlation function, exhibits Brillouin peaks at ! ¼
�c0k and a central Rayleigh peak, as usual, but, due to
the anomalous transport, the width and inverse height of

the Brillouin peaks scale with k as jkj3=2 [2,3] and those of
the Rayleigh peak with jkj5=3 [19], in contrast to the usual
scaling with k2. Also, the shape of these peaks is not
Lorentzian but is given through the Prähofer-Spohn scaling
functions as

~Sðk;!Þ ¼ X
�

ðn̂ð0Þ; â�ð0ÞÞ2 ~S�ðk;!Þ

þ ðn̂ð0Þ; âHð0ÞÞ2 ~SHðk;!Þ; (25)

with ~S�ðk;!Þ the Fourier transform of S�ðk; tÞ.
All results contained in Eqs. (12)–(24) hold in the limit

L ! 1. For finite periodic systems they apply for k ¼
2�n=L and for times or inverse frequencies small com-
pared to the sound mode traversal time L=c0. For correla-
tion functions at k ¼ 0, like in Eqs. (19) and (22), this time

range may be extended to a value proportional to L3=2.
It seems fair to pose that the leading long-time dynamics

of 1D hydrodynamic systems belong to the KPZ universal-
ity class. The sound-sound correlation functions to leading
order are identical to the density-density correlation func-
tion of the fluctuating Burgers equation, while the heat-
heat correlation functions are directly expressible in terms
of KPZ memory functions in coordinate systems moving at
the speed of sound. But notice that the correction terms
decay only slightly faster with time and in most cases will
not be negligible up to very large times.

As discussed by Prähofer and Spohn [8], a self-consistent
one-loop mode coupling approximation comes remarkably
close to the exact solution to the Burgers equation, although
there are deviations in the scaling functions of up to 10%
and not all details of the functional behavior are captured
correctly. Similar results are to be expected for the one-loop
mode coupling approximation to 1D hydrodynamics. Some
care is required, however, with using published results. In
previous analyses, Delfini et al. [2] and Wang and Li [4]
assumed the sound modes were linear combinations of
momentum density and displacement field (equivalent to
number density in the absence of transversal modes), with-
out contributions from the energy density. As can be seen
from Eq. (3), this is justified if ð@p=@eÞn ¼ 0 or, equiva-
lently, ifCp ¼ Cv. This is the case for harmonic chains, so it

will be a good approximation for weakly anharmonic
chains. For general potentials, corrections are needed.

It has been remarked in several places that the character-
istics of heat conduction and sound dissipation change
markedly under certain special conditions, such as having
an anharmonic nearest neighbor potential symmetric in the
deviations from the average nearest neighbor distance
under zero pressure [2,3] (this includes the Fermi-Pasta-
Ulam-�model) or zero pressure in a system of constrained

hard points [20]. This can be understood as resulting from a
vanishing mode coupling amplitude Vs. In other words, the
condition for having non-KPZ behavior quite simply and

generally is n
c0
ð@c0@n Þs ¼ �1. It is satisfied indeed for the

classes of systems mentioned above, but in general it
does not require any of the criteria quoted above nor the
conditionCp ¼ Cv as conjectured in Ref. [5]. As discussed

by Delfini et al. [3], the mode coupling under these con-
ditions is dominated by the coupling of a sound mode to
three sound modes of the same type. Sound damping
becomes almost normal. In contrast to what is stated in
Ref. [3], it is still superdiffusive but only logarithmically so
(see Ref. [21] for the equivalent case of a growth model
with leading nonlinearity of cubic order). The k-dependent

heat conduction coefficient diverges roughly as jkj�1=2,
and the heat current time correlation function decays as

t�1=2, both up to logarithmic corrections. The latter must be
responsible for the gradual increase with time of the ex-
ponent � for heat conduction from roughly 2=5 to 1=2,
which has been reported for simulation results [3,5].
In stationary states the k��2 behavior of the Rayleigh

peak implies a nonlinear temperature profile, with, for
large systems, a cusp of form jx� x0j1�� (the inverse
Fourier transform) near a boundary located at x0. Such
nonlinear profiles have been observed regularly in simula-
tions, but so far I have nowhere seen mention of this simple
interpretation.
Like in the case of the fluctuating Burgers equation, the

mode coupling equations can also be obtained from fluc-
tuating nonlinear hydrodynamic equations [22]. Since their
structure remains exactly the same, all the results obtained
above hold for all one-dimensional systems satisfying the
usual Landau-Lifshitz fluctuating hydrodynamic equations
with finite transport coefficients. The asymptotic long-time
behavior of density-density and current-current time cor-
relation functions is independent of the values of the
transport coefficients, again like for the fluctuating
Burgers equation. Obviously, transport coefficients in non-
linear transport equations may be finite even if the corre-
sponding Green-Kubo integrals are divergent. Whether
this actually will happen for one- and two-dimensional
Hamiltonian systems, as far as I know, is an open question.
More detailed derivations of the results presented here

will be published elsewhere. Besides comparisons to ex-
isting numerical results, new molecular dynamics simula-
tions will be performed. Applications to quantum systems
will also be studied. They look feasible but will require
careful consideration of all quantum aspects.
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