PRL 108, 180501 (2012)

PHYSICAL REVIEW LETTERS

week ending
4 MAY 2012

Towards Practical Classical Processing for the Surface Code

Austin G. Fowler, Adam C. Whiteside, and Lloyd C. L. Hollenberg

Centre for Quantum Computation and Communication Technology, School of Physics,
The University of Melbourne, Victoria 3010, Australia
(Received 24 October 2011; published 1 May 2012)

The surface code is unarguably the leading quantum error correction code for 2D nearest neighbor
architectures, featuring a high threshold error rate of approximately 1%, low overhead implementations of
the entire Clifford group, and flexible, arbitrarily long-range logical gates. These highly desirable features
come at the cost of significant classical processing complexity. We show how to perform the processing
associated with an n X n lattice of qubits, each being manipulated in a realistic, fault-tolerant manner, in
O(n?) average time per round of error correction. We also describe how to parallelize the algorithm to
achieve O(1) average processing per round, using only constant computing resources per unit area and
local communication. Both of these complexities are optimal.

DOI: 10.1103/PhysRevLett.108.180501

Quantum computing promises exponentially faster pro-
cessing of certain problems, including factoring [1] and
simulating quantum physics [2]. Many quantum algo-
rithms are now known [3]. The primary challenges are to
mitigate and cope with the imperfections of quantum de-
vices. The surface code [4,5] supports a powerful quantum
computing scheme [6-8] featuring an experimentally real-
istic threshold error rate of approximately 1% [9] and
requiring only a 2D square lattice of qubits with nearest
neighbor interactions. In this work, we describe how to
perform the complex classical processing associated with
the full, fault-tolerant scheme in a complexity-optimal
manner. Using the current version of our code, we can
simulate the fault-tolerant operation of millions of qubits, 4
orders of magnitude more than in any previous work. A
detailed timing analysis can be found in [10].

Previous works on the classical processing of topologi-
cal quantum error correction (QEC) have obtained results
by making one of two significant modifications to the
problem. Large lattice sizes have been simulated [11],
however only by assuming that 4-qubit operators can be
measured perfectly. Small lattices have been simulated
fault tolerantly [7,9,12,13], however, these works used
the code of Kolmogorov [14] which does not support
continuous processing of an arbitrary number of rounds
of QEC. Our code now supports continuous fault-tolerant
processing, using constant memory and with processing
rate independent of the number of rounds.

The surface code involves a 2D lattice of qubits with
local stabilizers [4]. We shall initially assume perfect
stabilizer measurement to compare with [11]. Error chain
endpoints anticommute with stabilizers leading to —1
measurements. Each —1 gets a vertex. Assuming indepen-
dent errors, long chains are exponentially unlikely. Edges
between vertices are weighted with their length. We inde-
pendently correct X and Z errors using the minimum
weight perfect matching algorithm [15,16]. We use our

0031-9007/12/108(18)/180501(4)

180501-1

PACS numbers: 03.67.Pp, 03.67.Ac

own implementation which includes the concept of
boundaries and returns edges such that every vertex is
incident on exactly one edge and the total weight is mini-
mal (Fig. 1). Corrections are applied along the chosen
edges. Logical errors occur when after correction a chain
of errors connecting opposing boundaries remains.
Provided error chains are well separated, this is unlikely.
Clearly, a complete graph cannot be used if an O(n?)
runtime is to be achieved as a complete graph has O(n*)
edges. Progress can be made by noting that we are initially
only considering data qubit errors and that a chain of errors
between two —1 stabilizer measurements has length given
by the Manhattan metric. If we choose a vertex and imag-
ine looking at the graph from that vertex, nearby vertices
casts shadows, where we define a point in the plane to be in
shadow if it can be reached by a minimum length path
passing through another vertex [Fig. 2(a)]. We define a
vertex to be shadowed if it is in shadow yet neighbors
an unshadowed point, and deeply shadowed if all neigh-
boring points are shadowed. Empirically, we find that
if two vertices are deeply shadowed when viewed from
one another, there always exists a minimum weight perfect
matching that does not use an edge between them

a) by b) b
NS \ .\.
‘ AN N
by " \{'/Il, 77\ | b2 by \ o b>
SN
= -,
b3 b3
FIG. 1. (a) Example of a weighted graph with edges connect-

ing vertices to labeled boundaries b;. (b) Set of edges such that
every vertex is incident on exactly one edge and the total weight
of all edges is minimal.

© 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.180501

PRL 108, 180501 (2012)

PHYSICAL REVIEW LETTERS

week ending
4 MAY 2012

a) o4 3 b) ° C) °
1 [J L [t []
[J [] [
2
v [] []

FIG. 2. (a) Plane as seen from vertex v. Vertices 1 and 2 are
unshadowed, vertex 3 is shadowed, vertex 4 is deeply shadowed.
(b) A matching with an edge to a deeply shadowed vertex. (c) An

equal weight rearrangement of the matching. A lower weight
matching is possible.

[Figs. 2(b) and 2(c)]. This implies that such edges do not
need to be included in the graph that describes the problem.
This cuts the number of edges down to O(n?). The validity
of this approach has been verified with millions of simu-
lations finding identical weight matchings with both the
complete and shadowed approaches.

We now describe the minimum weight perfect matching
algorithm, focusing on what is actually done. The original
papers of Edmonds [15,16] beautifully prove that the
method works. First, some definitions. Let G be a graph
with vertices {v;}, edges {e;;}, and edge weights {w,}.
Associate with each vertex v; a variable y;, which can be
thought of as the radius of a ball centered at v,;. Odd sets of
vertices can also be made into blossoms B, that have their
own variables Y;, which can be thought of as the width of
shell around every object in Bj. If a pair of blossoms
intersect, then one is contained in the other. Define an
edge e;; to be tight if w;; —y;, —y;, — 3 ¥, =0, where
the sum is over k such that exclusively v; or v; is in By.
This condition is pictorially depicted in Fig. 3.

Define anode to be a vertex or blossom. Define a blossom
to be unmatched if it contains an unmatched vertex. An
alternating tree is a tree of nodes rooted on an unmatched
node such that every path from the root to a leaf consists of
alternating unmatched and matched edges. Alternating
trees can only branch from the root and every second
node from the root. Define branching nodes to be outer.

©

FIG. 3. An example of a tight edge. Edge ¢, has the property
that Wip =Y — Y2 — Yl - Y2 = 0.

Define all other nodes in the alternating tree to be inner.
Figure 4 shows all necessary alternating tree manipulations.

Given a weighted graph G, the following algorithm finds
a minimum weight perfect matching. 1. If no unmatched
vertices, return matched edges. 2. Choose unmatched v as
root of alternating tree. 3. If no edges emanating from the
outer nodes of the alternating tree are tight, henceforth
called O-tight edges, increase the value of y or Y associated
with each outer node while simultaneously decreasing the
value of y or Y associated with each inner node until an
edge becomes O-tight, or an inner blossom node Y variable
becomes 0 [Fig. 4(a)]. 4. If an inner blossom node Y
variable becomes 0 and there are still no O-tight edges,
expand that blossom and return to 3 [Fig. 4(b)]. 5. Choose
an O-tight edge e. 6. If e leads to a matched node not
already in the alternating tree, add the relevant unmatched
and matched edge and associated nodes to the alternating
tree and return to 3 [Fig. 4(c)]. 7. If e leads to an inner node,
mark e so it is not considered again during the growth of
this alternating tree and return to 3 [Fig. 4(d)]. 8. If e leads
to an outer node, add the unmatched edge to the alternating
tree. There will now be a cycle of odd length. Collapse this
cycle into a new blossom and associate a new variable
Y = 0 [Fig. 4(e)]. Return to 3. 9. If e leads to an unmatched
vertex or boundary, add e to the alternating tree and aug-
ment the path (unmatched < matched) from the root to the
end of e [Fig. 4(f)]. Destroy the alternating tree, keeping
any newly formed blossoms. Return to 1.

On average, the algorithm only needs to consider a small
local region around each vertex to find another unmatched
vertex to pair with. This is a property of the graphs asso-
ciated with topological QEC only, as the probability of
needing to consider an edge of length / decreases exponen-
tially with /. This ensures that the runtime is O(n?).

b) c)
y
expand
blossom
root
y

FIG. 4 (color online). All required alternating tree manipula-
tions. (a) Increase outer and decrease inner y values, (b) inner
blossoms with ¥ = 0 can be expanded, (c) outer-matched edges
grow the tree, (d) outer-inner tight edges ignored, (e) outer-outer
tight edges make cycles that become blossoms, (f) unmatched
vertex found, augment path from root to leaf.

180501-2

PRL 108, 180501 (2012)

PHYSICAL REVIEW LETTERS

week ending
4 MAY 2012

If we consider a standard square surface code with
smooth boundaries top and bottom and rough boundaries
left and right [8], we can randomly apply bit-flips X with
probability p to the data qubits, perfectly measure the Z
stabilizers, construct a shadowed graph as described above,
perform minimum weight perfect matching, apply correc-
tions along the matched edges, and test for logical failure
by checking whether there are an odd or even number
of bit-flips along the top boundary. After correction, there
can only be an odd number of bit-flips along the top
boundary if a chain of bit-flips has formed from top to
bottom boundary, indicating a logical error. The shortest
topologically nontrivial chain is the distance d of the code
(n =2d — 1). By performing many simulations, the
probability of logical X error p; versus p can be plotted
for a variety of distances (Fig. 5).

We observe a threshold error rate of 10.25%, versus
8.2% in the work of [11], only slightly below the known
ideal threshold error rate of 10.9% obtained using compu-
tationally inefficient techniques [17,18]. Furthermore,
by comparing the fraction of the threshold error rate at
which our curves cut a logical error rate of 4 X 1073 to the
equivalent quantities in [11], it can be seen that our ap-
proach corrects twice as many errors at a given code
distance, leading to a quadratic improvement of the logical
error rate. Finally, the raw speed of our code is evident in
our ability obtain data far below threshold.

High performance when assuming perfect stabilizer
measurements enables comparison with existing results,
however this case is not particularly interesting in prac-
tice. Only a fully fault-tolerant approach can be consid-
ered practical. When using fault-tolerant circuits to
measure stabilizers and applying depolarizing noise, the
simple 2D square lattice with Manhattan metric consid-
ered above becomes a complicated 3D lattice [9] that has
both spatial boundaries and a temporal boundary repre-
senting the latest round of stabilizer measurements. A

0.2

101k %
— E 0151 Py
1
S
E 10- E
© 0. |
: 0.09 0.095 0.1 0.105 O0.11
(e}
5 10°F
[}
=< d=8 ——
3 d=16
Q 4| d =32
3 10 d=64—
4 d=128

5 d =256
10°F d=512
x q=1024
1% 1072 1x107

Data qubit bit-flip probability (p)

FIG. 5 (color). Logical X error rate p; versus data qubit bit-
flip probability p for various code distances d assuming perfect
stabilizer measurement. The threshold error rate is 10.25%.

number of modifications to the algorithm are required to
account for these differences.

First, calculating the complete shadow of a vertex does
not work very well in the 3D lattice. There are 12 outward
directions to consider instead of 4 [9], and the probability
that all 12 directions are blocked by nearby vertices is low.
Instead of exploring the entire unshadowed region, which
can be exceedingly large, one needs to set a maximum
radius of initial exploration. With high probability, only
this initial region is required. Regions further from the
vertex are only explored as required (if another unmatched
vertex or boundary is not found in the initial region). The
probability of requiring a region of radius r decreases
exponentially with r. In practice, we choose r just large
enough to ensure nearest and next nearest neighbor lattice
locations are explored initially.

Second, the mobile temporal boundary introduces addi-
tional complexity. One must add new vertices to the prob-
lem as new data is obtained. This is straightforward,
essentially just increasing the list of unmatched vertices.
However, when growing an alternating tree, it is possible
for the tree to attempt to grow into the future. We chose to
solve this problem by undoing the growth of the tree and all
of the changes its growth introduced—essentially running
the algorithm backwards. Growth is only reattempted when
data from more rounds of error correction is available.

Third, detecting logical errors is more complex. One
needs to turn off errors, perform a perfect round of stabil-
izer measurement, match all vertices, apply corrections,
detect logical errors as before by considering the top
boundary, and then undo everything to return the simulator
to its state before logical error detection. Note that this
would not be done in a real computer. This procedure
consumes negligible additional memory as a do/undo ap-
proach is used, and takes approximately 10 times as long as
a single round of standard error correction.

Fourth, it is nontrivial to ensure the amount of memory
used remains finite as the simulation proceeds. With van-
ishingly small probability, in principle the entire history of
stabilizer measurements is required to correctly match
current time data. In practice, we keep track of the maxi-
mum distance in the past the algorithm has traversed to
perform any matching, and store a fixed multiple of this
distance, discarding any older data. Close to the threshold
error rate, and especially above threshold, extremely large
blossoms are created, involving thousands of vertices and
hundreds of blossom layers. Storing these blossoms domi-
nates the memory cost. The growth of large blossoms
provides a warning that more data needs to be stored,
ensuring reliable processing.

With these modifications in mind, fault-tolerant simula-
tion data is shown in Fig. 6. All data points represent one or
more simulation instances run continuously until a total of
10000 logical errors were observed, enabling reliable
determination of the probability of logical error per round

180501-3

PRL 108, 180501 (2012)

PHYSICAL REVIEW LETTERS

week ending
4 MAY 2012

F 0.02
-1
10 F
. E 001 Kas
> 3 d=35—
o L / d=45—
2 102 o 19259
© E 8x10® 9x10° 1x10%
S
s 10°
>
8
=4
8’ 10
4
10°
E) el 4d=57
1x10* 1%x10° 1% 102

Depolarizing probability (p)

FIG. 6 (color). Logical X error rate per round of error correc-
tion p; versus depolarizing probability p for various code
distances d using fault-tolerant stabilizer measurement. The
threshold error rate is 0.9%.

of error correction. Note that the threshold error rate is
0.9%, in contrast to prior work that estimated it at 1.1% [9].
This highlights the danger of estimating thresholds from
small distance data only. The new code exactly reproduces
the curves of the old code up to d = 13, however the true
threshold error rate is really only visible for d > 21. This
can be attributed to boundary effects, since boundary sta-
bilizers are lower weight and hence more reliable. The
physical error rates at which a factor of 2 (10) improvement
in logical error rate is observed when the code distance is
increased by 2 remain 0.5% (0.2%), respectively, so this
threshold error rate change is of no practical significance.

Memory limitations prevented the gathering of statistics
near the threshold error rate at higher distances, however at
p = 1073 the vast blossoms that make high error rate
correction so difficult do not occur, and it is straightfor-
ward to simulate distances as high as d = 1000—over
4 X 10% qubits. Needless to say, no logical errors are
observed in such a simulation. Each round of error correc-
tion takes under 3 sec using a single core of an AMD
Opteron, with each individual matching taking tens of
microseconds. Given the algorithm uses only local infor-
mation, it is in principle straightforward to parallelize,
using a 2D array of processors with each processor
handling a fixed size patch of code. Inserting a small pause
after each patch correction enables any patch with a ran-
domly harder matching to catch up after lagging behind.
This would enable the classical processing of an infinite
lattice in constant average time per round of error correc-
tion, with the average time approaching the time for a
single matching in the limit of low p and high classical
computing resources.

In summary, we have introduced an algorithm that finds
a minimum weight perfect matching in O(n?) time given a

graph generated by an n X n lattice of qubits running the
surface code fault-tolerantly. This algorithm parallelizes to
O(1) on an infinite lattice with constant computing resour-
ces per unit area. It is conceivable that a parallel imple-
mentation could achieve hundred microsecond processing
of a round of error correction, sufficient to keep pace with
ion trap quantum gates [19]. Additional ideas, including
implementation in hardware, would be required to achieve
the submicrosecond processing times required to keep pace
with faster gates such as those found in superconducting
circuits [20].

We acknowledge support from the Australian Research
Council Centre of Excellence for Quantum Computation
and Communication Technology (Project
number CE110001027), and the US National Security
Agency (NSA) and the Army Research Office (ARO)
under Contract No. W911NF-08-1-0527.

[1] P.W. Shor, in Proc. 35th Annual Symposium on
Foundations of Computer Science (1994), p. 124.
[2] S. Lloyd, Science 273, 1073 (1996).
[3] S. Jordan, Quantum algorithm zoo,
.caltech.edu/sjordan/zoo.html (2010).
[4] S.B. Bravyi and A.Y. Kitaev, SIAM J. Sci. Statist.
Comput. 26, 1484 (1997).
[5] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
J. Math. Phys. (N.Y.) 43, 4452 (2002).
[6] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98,
190504 (2007).
[7] R.Raussendorf, J. Harrington, and K. Goyal, New J. Phys.
9, 199 (2007).
[8] A.G. Fowler, A.M. Stephens, and P. Groszkowski,
Phys. Rev. A 80, 052312 (2009).
[9] D.S. Wang, A.G. Fowler, and L.C.L. Hollenberg,
Phys. Rev. A 83, 020302(R) (2011).
[10] A.G. Fowler, A.C. Whiteside, and L.C.L. Hollenberg,
arXiv:1202.5602.
[11] G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104,
050504 (2010).
[12] S.D. Barrett and T. M. Stace, Phys. Rev. Lett. 105, 200502
(2010).
[13] D.S. Wang, A.G. Fowler, A.M. Stephens, and L.C.L.
Hollenberg, Quantum Inf. Comput. 10, 456 (2010).
[14] V. Kolmogorov, Math. Program. Comput. 1, 43 (2009).
[15] J. Edmonds, Can. J. Math. 17, 449 (1965).
[16] J. Edmonds, J. Res. Natl. Bur. Stand., Sect. B 69, 125
(1965).
[17] M. Ohzeki, Phys. Rev. E 79, 021129 (2009).
[18] S.L.A. de Queiroz, Phys. Rev. B 79, 174408 (2009).
[19] D. Hanneke, J.P. Home, J.D. Jost, J.M. Amini, D.
Leibfried, and D.J. Wineland, Nature Phys. 6, 13 (2009).
[20] M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C.
Bialczak, Y. Chen, M. Lenander, E. Lucero, A.D.
OConnell, D. Sank et al., Science 334, 61 (2011).

http://www.its

180501-4

http://dx.doi.org/10.1126/science.273.5278.1073
http://www.its.caltech.edu/sjordan/zoo.html
http://www.its.caltech.edu/sjordan/zoo.html
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://arXiv.org/abs/1202.5602
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevLett.105.200502
http://dx.doi.org/10.1103/PhysRevLett.105.200502
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1103/PhysRevE.79.021129
http://dx.doi.org/10.1103/PhysRevB.79.174408
http://dx.doi.org/10.1038/nphys1453
http://dx.doi.org/10.1126/science.1208517

