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A tractable N-state Rabi Hamiltonian is introduced by extending the parity symmetry of the two-state

model. The single-mode case provides a few-parameter description of a novel class of periodic systems,

predicting that the ground state of certain four-state atom-cavity systems will undergo parity change at

strong-coupling. A group-theoretical treatment provides physical insight into dynamics and a modified

rotating wave approximation obtains accurate analytical energies. The dissipative case can be applied to

study excitation energy transfer in molecular rings or chains.
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Interactions between spin systems and harmonic oscil-
lators (boson modes) have been studied for over 70 years
[1–3]. One of the most well known, the quantum Rabi
model [1], is a Hamiltonian describing interactions be-
tween a two-level system and a cavity mode. The model
has also formed a basis of understanding for exciton-
phonon interactions [4] and, along with its multimode
extension, has numerous established applications in chem-
istry and physics (see [5–7] and references therein). The
Jaynes-Cummings (J-C) [3] model is obtained by taking
the Rabi model in the rotating wave approximation (RWA),
where the ‘‘counterrotating’’ terms are ignored (see, e.g.,
[8]). While the J-C model is sufficient to study small atom-
field coupling, the RWA breaks down as the coupling
approaches the mode frequency [9,10] and the full Rabi
model is needed. Experimental techniques have accessed
these strong-coupling regimes [11] and there is much on-
going interest in future experimental realizations in both
cavity [12] and circuit [13] QED.

Many-site spin-boson interaction, e.g., multistate atom-
cavity interaction [14] or excitation energy transfer in
multichromophoric systems [15], continues to be a subject
of significant interest, dictating a need for extensions of the
two-state model. Extensions of the J-C model have been
studied extensively [16–19], but are not applicable in the
strong-coupling regime. Exciton-phonon generalizations
which extend the parity symmetry of the Rabi model [20]
are neither tractable nor applicable to atom-cavity systems.
Most importantly, the Rabi model is the single-mode ver-
sion of a dissipative (infinite-mode) spin-boson model
[21], signifying that light-matter interaction is a simplified
manifestation of a more fundamental interaction between a
two-state system and a dissipative environment. Previous
dissipative [22–25] generalizations have neither extended
the symmetry nor preserved this correspondence.
Motivated by these properties, this Letter presents a
symmetry-preserving N-state extension of the Rabi model.
The extension includes counterrotating terms in a rigorous,
intuitive, and mathematically manageable way, using a
minimal number of parameters and paving the way for

applications to multilevel atom-cavity experiments at
both weak and strong coupling. A group-theoretical ap-
proach [2] provides numerical advantages and physical
insight into dynamics of the model. The symmetric gener-
alized RWA [7] is applied to obtain accurate analytical
energies and eigenstates valid for strong coupling. The
above procedures are significantly simplified via the gen-
eralized spin matrices [26], providing a useful tool for the
treatment of finite quantum systems. The corresponding
infinite-mode extension can in turn be applied to periodic
dissipative N-state systems.
This work will present the N-state Rabi model’s

physical motivation in two different representations,
discussing the N ¼ 3, 4 cases from the viewpoint of
atom-cavity physics. A discussion of the conserved
quantum numbers, a third symmetry-adapted representa-
tion, and dynamical properties of the single-mode case
follows. The remaining space is devoted to a brief
description of the dissipative case. For reference, the
three representations discussed here are graphically out-
lined in Fig. 1 for N ¼ 2, 3, 4.

FIG. 1 (color online). (a) The partially diagonalized (left
panel), position (center), and energy (right) representations
form three equivalent interpretations of the two-state Rabi
model. (b) and (c) analogously depict the N-state Rabi model
from Eq. (6) with N ¼ 3, 4, respectively. The parameters J, K
form the energies of the system, fp; �; cg are each system’s
conserved quantum numbers, and ~HN;n are boson chains (defined

in text).
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Position representation.—Consider the Hamiltonian
H ¼ Hsys þHfield þHint describing an N-state system

interacting with electric and magnetic fields (E and B) of
a cavity mode of frequency ! and wave number K. The
Hamiltonian will be formulated in the position representa-
tion, where the interaction Hint is on the (spin) diagonal.
This differs from the traditional introduction of the
Rabi model in the energy representation, where the inter-
action is off-diagonal (p. 194 of [8]). While the two for-
mulations are equivalent for the two-state case, this version
provides a natural symmetry-based extension. The system
is defined by

Hsys ¼
X

k

XN�1

n¼0

Jkðjnihnþ kj þ jnþ kihnjÞ; (1)

where fjnigN�1
n¼0 form a complete set of position eigenstates

and k � 0 sums over all sites. Transforming H into the
energy representation, i.e., diagonalizing Hsys, obtains an

N-state ‘‘atom’’ with energies determined by the parame-
ters Jk. The interaction is

Hint ¼ �dE �E� dB �B; (2)

where dEðBÞ is the electric (magnetic) dipole moment op-

erator. The cavity mode can be quantized [8] with E /
ðaþ ayÞ sinðKzÞ, B / iðay � aÞ cosðKzÞ, and Hfield ¼
!aya (with ay and a denoting creation and annihilation
operators of the mode). Switching sin$ cos by introducing

b ¼ ae�i�=2, discretizing the z axis over the N position
states of the atom (Kzjni ¼ 2�n

N jni), and relegating the

coupling strengths to a parameter � obtains the N-state
Rabi Hamiltonian [27]

H ¼ !bybþ �
XN�1

n¼0

ðbei2�n=N þ bye�i2�n=NÞjnihnj

þX

k

XN�1

n¼0

Jkðjnihnþ kj þ jnþ kihnjÞ: (3)

For the two-state case (N ¼ 2), this simplifies to the origi-
nal Rabi model

H2 ¼ !bybþ �ðbþ byÞ�z þ J�x; (4)

where J � JN=2 and �x;z are the usual Pauli matrices. One

can also interpret H as a normal mode smeared over a
tunneling N-site system (discussed later). As a result, this
extension maintains the correspondence between atom-
field interaction and a more general spin-boson model.

It will now be shown that reexpressing the model in
terms of the generalized spin matrices, the unitary general-
ization of the Pauli matrices [26], will reduce mathematical
complexity while increasing physical understanding.
Suppressing dependence on N, generalized spin matrices
for 0 � j, k < N are defined (modulo N) as

Sj;k ¼
XN�1

n¼0

ei2�nj=Njnihnþ kj ¼ ðS1;0ÞjðS0;1Þk: (5)

With the details relegated to [28], the reader need only
keep in mind the function of the two indices: j determines
the phase at each entry n while k determines the entry’s

location. The matrices S1;0 and Sy1;0 concisely express Hint

while S0;k þ Sy0;k describes the neighbor couplings of Hsys.

For 0< k � � � b12 ðN � 1Þc (with bNc the floor function),
Eq. (3) is thus reexpressed as

H ¼ !bybþ �ðbS1;0 þ bySy1;0Þ þ JS0;N=2

þ X�

k¼1

JkðS0;k þ Sy0;kÞ: (6)

Energy representation.—One can now transform H into

the energy representation Ĥ ¼ VyHV using the unitary
transformation

V ¼ 1ffiffiffiffi
N

p XN�1

k¼0

ei2�k
2=NSk;kS1;0; (7)

linking the above formulation with the well-established
picture of dipole transitions in N-state systems [8]. The
transformed Hamiltonian

Ĥ ¼ !bybþ �ðbS2;1ei4�=N þ bySy2;1e
�i4�=NÞ þ Ĥsys

(8)

models an N-state atom coupled to a field mode (with the
option for more modes [29]). The symmetry of the cou-
pling determines which states are coupled by the mode and

the state energies are determined by Ĥsys. For N ¼ 2,

Eq. (8) reduces to Ĥ2, the Rabi Hamiltonian in the energy
representation [�x $ �z in Eq. (4)]. The three- and four-
state cases are reviewed below.
N ¼ 3: Setting J1 � K in Eq. (6), the three-state case in

the energy representation is

Ĥ3 ¼
!bybþ 2K �be�i2�=3 �by

�byei2�=3 !byb� K �bei2�=3

�b �bye�i2�=3 !byb� K

0
BB@

1
CCA: (9)

The above is a three-level atom with an initially degenerate
ground state and energy separation 3K coupled to one
cavity mode [29]. The states are thus arranged in a �
configuration (with inversion of K obtaining a V configu-
ration), similar to well-studied �-systems [16]. However,
dipole transitions occur between all three levels while
extending the parity symmetry and maintaining the relative
simplicity of the two-state Rabi model. The bottom left
entry in Eq. (9) describes the process in which the atom
makes a transition from the upper to one of the lower levels
and a photon is annihilated [8]. The RWA (with respect to

!bybþ Ĥsys) removes this transition, relating Eq. (9) to
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well-established extensions of the J-C model [16]. The
coupling between the ground states represents an ac-
Stark shift (similar to the J-C model in the dispersive
regime [30], relevant to nondemolition measurements),
which interestingly remains relevant after the RWA.

N ¼ 4: For the four-state case, Ĥsys ¼ diagfJ þ
2K;�J; J � 2K;�Jg. Depending on the relation between
J > 0 and K [Fig. 1(c)], one can obtain either a double-�,
tripod, ore four-state configuration [19,31]. Inversion of J
obtains inverted tripod and double-� configurations; in-
version of K leaves the system invariant just like inversion
of J for N ¼ 2. The cavity frequency! can be tuned to the
three possible transition frequencies of the atom, produc-
ing a four-parameter model for treating single- and (in the
e case) multilevel transitions in several related systems.
Additionally, H4 can be separated into two effective two-
state systems as K ! 0. One striking feature is that the
ground state can change for increasing values of �, a

property not seen at N < 4. Shown in Fig. 2(b) for a
particular e-configuration, the original ground state at
small coupling (blue [dark gray]) is surpassed by the un-
perturbed first excited state (green [medium gray]) as the
coupling increases.
Conserved quantum numbers.—The generalized spin

matrices allow one to easily construct the complete set of
conserved quantum numbers for H, providing insight into
dynamics [9] and integrability [6]. It can be shown that the
Hamiltonian (6) possesses an N-fold rotational symmetry
and commutes with the rotations fRnS0;ngN�1

n¼0 , where the

operator Rn � expði 2�N nbybÞ and the parity operator

R � RN=2 is present for even N. These can be compiled

into the general N-state commuting operator

N ¼ JRS0;N=2 þ
X�

k¼1

JkðRkS0;k þRy
k S

y
0;kÞ; (10)

consisting of the family of � commuting Hermitian opera-
tors multiplied by site couplings Jk (with the additional
parity operator for even N). For the original N ¼ 2 case,
N reduces to J multiplied by the well-known spin-boson
parity�xR [6,9]. This result shows that theseN-state atom-
cavity systems not only preserve parity for any even N, but
are classified by other quantum numbers for N > 2. For
example, the three-state case contains a conserved quantum
number � ¼ 2, �1 while the four-state system has two:
parity p ¼ �1 and ‘‘cascade’’ number c ¼ 0, �2 (see
Fig. 1(c) and [28]).
Analytical insight.—The rotational symmetry of H

allows decomposition into N infinite-dimensional subspa-
ces (boson chains, denoted as ~HN;n) via a group-theoretic

transformation U [28]. In this partially diagonalized rep-
resentation, the Hamiltonian ~H ¼ UyHU is diagonal in the
spin subspace with hn0j ~Hjni ¼ �n0;n ~HN;n. These chains are

isomorphic to H and provide significant numerical advan-

tages [7]. For the two-site case, ~N ! J�z, resulting in
parity chains [9], shown in the left panel of Fig. 1(a).
The chains and their respective quantum numbers for
the three- and four-state cases are depicted in Figs. 1(b)
and 1(c), respectively. The numerical energies for H3 and
H4 are plotted in Figs. 2(a) and 2(b), respectively, and each
chain is labeled by a color. The spectrum of H demon-
strates the familiar braidlike crossing pattern of the two-
level Rabi Hamiltonian with the addition of more braids.
The group-theoretical approach is also useful for extend-

ing analytical approximations, such as the symmetric
generalized RWA (S-GRWA [7], applied in [28]). The
S-GRWA energies (dashed in Fig. 2) are most accurate in
the deep-strong coupling regime (� * !), where the sym-
metry and chain structure dominate the spectrum [9].
While the S-GRWA also fares well at � � !, the symme-
try is not terribly relevant in that region and the original
RWAmay be applied without loss of accuracy. In the weak
coupling regime, it is anticipated that the dynamics will
exhibit collapse and revival phenomena reminiscent of the
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FIG. 2 (color online). Correlation diagrams of energy vs cou-
pling � for (a) H3, a resonant �-configuration with K ¼ !=3,
and (b) H4, a e-configuration with K ¼ !=4 and J ¼ !=6
(! ¼ 1). The numerical energies belong to chains ~HN;n (for n <
N ¼ 3, 4) represented as red (medium-dark gray), blue (dark
gray), green (medium gray), and cyan (light gray), in that order,
while approximate S-GRWA energies are dashed. The model
predicts that the e-configuration may have a different ground
state at �=! � 1 than at weak coupling.
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original J-C model [8], but this time between multiple
atomic states. The notably different behavior of H in the
strong-coupling regime will likely be an extension of that
described in [9] and will be chain dependent. Both of these
regimes (as well as transitions between them) reveal op-
portunities for interesting realizations of both well-known
and newly discovered phenomena of the original two-level
case.

Extensions.—Having examined the single-mode case,
the dissipative version is now defined. As an extension of
Leggett et al. [21], consider a continuous N-well system

with symmetric potential VðX̂; P̂Þ where the dynamics is
restricted to the N-dimensional subspace of the well
ground states. One then obtains Hsys by introducing tun-

neling matrix elements Jk between the wells [see Fig. 3(a)
for N ¼ 3]. With the dissipative environment approxi-
mated by a continuum of modes fq̂l; p̂lg, the N-state
spin-boson Hamiltonian is simply Eq. (6) with fb;!; �g !
fbl; !l; �lg. The interaction term satisfies the criteria of
[32] and simplifies to the degenerate two-site spin-boson
model at N ¼ 2. Other continuum normal modes can be
added in a similar fashion [29].

Since the N-state model preserves rotational symme-
try, the infinite-mode H is an effective model for the
single excitation manifold of a molecular ring or peri-
odic chain interacting with a normal mode of a collective
uncorrelated vibrational bath [23]. This model specifi-
cally includes the geometrical structure of the system, an
important property in excitation energy transfer [33].
Couplings Jk between all sites in the ring are included,
allowing one to model systems with interactions other
than the nearest neighbor. This version can model photo-
excitation dynamics of molecular trimers [24,34] and
larger rings. A specific example is the 8-9 member
B800 ring of photosynthetic LH-II [35], illustrated in
Fig. 3(b). Recently developed methods [15] for spin-
boson dynamics can readily be applied to reveal similar
insight into many-site systems as previous approaches
[21,36] have revealed in the simplest two-site case.

As a final note, instead of extending the number of
modes (or even reservoirs [37]), the N-state Rabi model

can be extended to many N-state systems. This approach
would be similar to previous extensions of the two-state
case [38], but would include odd N, potentially revealing
phase transitions and other interesting physics.
Summary.—This work introduces an extension of the

two-state Rabi model [1] to describe dynamics of a more
general N-state periodic system. The symmetry of the
system is utilized in a group-theoretical approach, reveal-
ing insight into its energies and conserved quantities while
also simplifying numerical analysis. A class of matrices
[26] provides an efficient method for obtaining the above
results. Finally, the proposed infinite-mode extension gen-
eralizes the two-site spin-boson model [21] to dissipative
periodic N-site systems.
Discussions with M.H. Devoret, S.M. Girvin, F.
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