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Extending recent modeling efforts for emulsions, we propose a nonlocal fluidity relation for flowing

granular materials, capturing several known finite-size effects observed in steady flow. We express the

local Bagnold-type granular flow law in terms of a fluidity ratio and then extend it with a particular

Laplacian term that is scaled by the grain size. The resulting model is calibrated against a sequence of

existing discrete element method data sets for two-dimensional annular shear, where it is shown that the

model correctly describes the divergence from a local rheology due to the grain size as well as the rate-

independence phenomenon commonly observed in slowly flowing zones. The same law is then applied in

two additional inhomogeneous flow geometries, and the predicted velocity profiles are compared against

corresponding discrete element method simulations utilizing the same grain composition as before,

yielding favorable agreement in each case.
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In homogeneous, steady, 2D simple shearing of a granu-
lar material composed of stiff frictional disks, a local
rheology emerges of the form � ¼ �ðIÞ in accord with
dimensional arguments, where � ¼ �=P for shear stress �
and normal pressure P, and I is the inertial number

_�
ffiffiffiffiffiffiffiffiffiffi
m=P

p
for particle mass m. In simulations of da Cruz

et al. [1], the law was quantified and found to be roughly
linear, inverted to read

Ið�Þ ¼ Hð���sÞð���sÞ=b (1)

for constant b and static yield coefficient�s and Heaviside
function H. By isotropic extension, it has been generalized
to a three-dimensional form for arbitrary flows and proven
effective in certain geometries [2,3].

Nonlocal effects cause divergence from the above law
and are most commonly studied in two senses. (i) In in-
clined plane flow, thin granular layers (measured in terms
of d, the particle diameter) require a higher angle of incline
before flow ensues. Since � is uniform in this geometry,
internal strength �s could be deemed thickness-dependent
in thin granular layers [4] (a property also observed in
suspensions [5]). (ii) In large bodies of granular material
undergoing steady inhomogeneous deformation, the local
law predicts zero flow in regions where �<�s. However,
this is not what is observed; ‘‘subyield’’ regions of�<�s

commonly possess slow flowing material, and the shear-
rate profile therein has an exponentially decaying character
with decay length scaled by the grain diameter [6,7]. It is
also observed that shear rate becomes independent of the
stress in these quasistatic zones, which defies the clear rate
dependence of the local law [8].

In this Letter, we propose and directly test a partial
differential equation (PDE) nonlocal flow rule for granular
materials aimed at describing steady-flow nonlocality,

sense (ii) above. The key novelty of the approach is its
geometric generality, quantitative predictability, and its
ability to bridge in one simple form the inertial regime
with the quasistatic, including the onset of rate indepen-
dence and finite-size effects. The model is obtained by
extending the nonlocal fluidity approach of Ref. [9], origi-
nally used for emulsions. Integral equations have also been
used describe nonlocal flow, as in Ref. [10], and can
explain sense (i) nonlocality as an effect of a thin domain
of integration. On the other hand, a simpler PDE-based
rheology can be derived as the ‘‘large-domain’’ limit of an
integral law, obtained by integrating over all space after
Taylor expanding the integrand. Past PDE-based laws in-
clude the theory of partial fluidization [11], kinetic fluctua-
tional theory [12], and the stochastic flow rule [13]. Since
nonlocal effects are dominant in slowly flowing zones, the
data against which we test our model must be obtained
down to very small flow rates, and success is measured by
agreement over the entire range of rates. Discrete particle
simulations for three different geometries (see Fig. 1) are
used for model validation, which can be accurately dis-
cerned down to almost arbitrarily small flow rates.
The existing model of nonlocal fluidity for a pressure-

insensitive emulsion, flow varying only in z, is as follows.
Define the fluidity by f ¼ _�=�, equivalent to the inverse
viscosity. In a homogeneous flow, a known local rheology
_� ¼ _�ð�Þ is obeyed. Thus, f ¼ flocð�Þ ¼ _�ð�Þ=�. If the
local law has a yield stress �y, then flocð� < �yÞ ¼ 0. The

internal length scale causes the fluidity to be affected by
plastic rearrangements nearby. Thus, by defining � as the
corresponding ‘‘cooperativity length’’ of the plastic defor-
mation mechanism, the fluidity is set to obey

f� flocð�Þ ¼ �2@2f=@z2: (2)
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For a known stress field �ðzÞ, the full flow solution is given
by solving the above and then substituting the solution into
_�ðzÞ ¼ �ðzÞfðzÞ to obtain the flow profile. The law is
similar to an inhomogeneous Helmholtz equation, which
naturally ‘‘diffuses’’ any sharp flow cutoffs in the floc field
into exponential-type decay in the f field.

However, an equally important (though less appreciated)
feature is that the fluidity becomes completely rate-
independent whenever floc vanishes. Hence, in regions
where � < �y, the law reduces to f� �2@2f=@z2 ¼ 0, a

linear ordinary differential equation with the property that
if fðzÞ solves the system, so does �fðzÞ for any scalar �.
Consequently, _�ðzÞ can be scaled by any multiple, regard-
less of the stress magnitude, and remain a valid solution.
This property characterizes rate independence.
Furthermore, the second-order term implies that shear
bands never shrink below a finite width governed geomet-
rically by �, a well-observed property of steady granular
flow. Together with the diffusive character discussed
above, the nonlocal fluidity model becomes attractive to
adapt for granular materials modeling.

Let us define the ‘‘granular fluidity’’ by

g ¼ _�

�
! glocð�;PÞ ¼ Hð���sÞ���s

b�

ffiffiffiffi
P

m

s
; (3)

the latter follows from the local law previously discussed.
We keep the numerator as _�, because, as discussed in the
theory of fluidity, it must give the time scale of macro-
scopic deformation; however, the denominator is switched
to�, because the friction state now determines closeness to
yielding.

For a quantitative description of �, we look to the
next advancement in nonlocal fluidity theory [14], which

derives � as a function of the stress state based on the
notion that plastic rearrangements induce stress redistrib-
ution (a mechanical picture common to other nonlocal
approaches including Ref. [10]). We adopt their framework
by replacing �with� accordingly, leaving the general form

� ¼ �ð�Þ ¼ A

�
1þHð�s ��Þ

j���sj
�
�
d (4)

for A a dimensionless scaling constant and d the micro-
length size (the grain width in our case). The divergence of
� approaching the yield point is validated by multiple
amorphous matter studies [15–17]. Our discrete element
method (DEM) data also support this point, as we will see
momentarily.
As in Ref. [14], the Laplacian can be used to generalize

the nonlocal law to two spatial dimensions. Hence,

r2g ¼ 1

�2
ðg� glocÞ: (5)

Similarly, we generalize to planar tensorial definitions of

the scalar quantities: _� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P

D0
ijD

0
ij

q
,P ¼ � 1

2 trð�Þ, and
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

P
�0

ij�
0
ij

q
=P for strain-rate tensorD ¼ 0:5½rvþ

ðrvÞT� andCauchy stress�, and 0 means the deviatoric part.
For now, we study only geometries whose steady flow is
incompressible: trD ¼ 0.
Interestingly, Eq. (5) has certain similarities with the law

governing the order parameter � in steady-state partial-
fluidization theory. Both have a Laplacian term, but in the
latter the remaining terms are nonlinear, which prevents
direct quasistatic rate independence but allows certain
dynamical phenomena in its full form, such as stick-slip
behavior. It should also be pointed out that newly devel-
oped implicit gradient plasticity models have also ex-
ploited a state variable obeying a law like Eq. (5) but
with ‘‘fictitious plastic strain’’ replacing the fluidity [18].
Our model [Eqs. (3)–(5)] requires four total modeling

parameters to characterize the granular matter. We use b ¼
1:05 and �s ¼ 0:26 from existing planar shear data utiliz-
ing the same DEM disk properties. While the theory for
emulsions gives � ¼ 0:5, we find that � ¼ 0:6 gives a
better fit to data and shall use this number. We also find
A ¼ 0:31 to be a good choice. These numbers are used for
all calculations in this Letter. We check our model against
DEM simulations, which follow the same scheme precisely
described in Ref. [8]; the material is composed of �20%
polydisperse disks with mean diameter d, mean mass m,
surface friction �c ¼ 0:4, contact elastic stiffnesses kn �
104P (corresponding to stiff particles), kt ¼ 0:5kn, and
restitution coefficient e ¼ 0:1.
We use MATHEMATICA 10 to compute high-precision

numerical solutions for the model, straightforward because
the model reduces to an ordinary differential equation in
spatially symmetric geometries as we consider here. The
geometries we consider have simple stress fields, which we

FIG. 1 (color online). Geometries being considered, with
qualitative depictions indicating the contrast between observed
velocity fields (vectors and solid lines) and predictions of the
local flow law Eq. (1) (dotted lines).
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use as the input to solve for g. In the DEM simulations, the
velocity of the wall and that of the free material adjacent to
it are frequently mismatched due to imperfections in at-
taining a fully rough condition, so, while we use the Vwall

as a reference value, our actual PDE boundary values
utilize that of the adjacent mobile material and not the
wall itself. Because of the immobility of wall particles, we
postulate that granular fluidity at the boundaries gwall is a
function of the local stress state and have found gwall ¼
gloc to be appropriate for fully rough walls (as in
Refs. [9,18,19]) or in general for flows where the inertial
number I is large near the walls. However, an in-depth
future study is necessary to fully quantify the boundary
conditions.

We first test our model rheologically, by comparing
against the detailed report by Koval et al. [8] for DEM
simulations of the annular shear cell. The geometry has
two concentric fully rough walls. The inner wall at r ¼ R
is rotated at a fixed rate� (i.e., Vwall ¼ R�), and the outer
wall at r ¼ 2R is prevented from rotating but permits some
inward wall movement to provide a fixed inward pressure
Pwall (force per length). In the steady state, moment bal-
ance gives �r�ðrÞ ¼ SðR=rÞ2 for inner wall shear stress S,
and the normal components are observed (through coarse-
graining) to obey ���ðrÞ � �rrðrÞ � �Pwall to a good
approximation throughout. Hence we have PðrÞ ¼ Pwall

and �ðrÞ ¼ j�r�ðrÞ=Pwallj.
The first data against which we test are a set of steady-

flow simulations conducted for different choices of the size
ratio ~R ¼ R=d with fixed normalized inner wall speed

~Vwall ¼ Vwall

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðd2Pwall

p Þ ¼ 2:5. In each run, when the
steady state is reached (taken as ~Vwall�t � 100, where �t
is the simulation time), coarse-grained ðI; �Þ pairs from
radial positions r (see [8] for the averaging method) are
plotted [see Fig. 2(a)]. For large values of I, the� vs I data
appear to collapse onto a single curve aligned with the
local law. For smaller I, the different tests split off from a
single curve in a clear fashion, demonstrative of the size
effect. The model captures this effect and simultaneously
gives the usual local law under homogeneous planar shear
conditions, matching data from Ref. [1]. It can be under-
stood that regions of large I tend to the local law because
g � gloc � �ð�Þ2r2g in zones of large �. We plot corre-
sponding velocity profiles in Fig. 3(a). As discussed in
Ref. [8], the material far from the inner wall is not yet in
the steady state, and hence our velocity predictions are
inferiorly limited by the lowest velocity value (in steady-
state range) available for each profile.

Another nonlocal aspect is probed by varying ~Vwall at
fixed ~R ¼ 50. The model solutions are plotted against
those of the DEM in Fig. 2(b). The DEM results show
clear rate independence; as wall speed decreases, a nearly
identical range of � values corresponds to a completely
different range of I for each run. Hence,�ðrÞ ! �sðR=rÞ2,
below �s almost everywhere, while the scaled flow rate

field _�ðrÞ= _�wall approaches a seemingly fixed, nowhere-
vanishing distribution. This result is also outside the realm
of local rate-independent models; for example, critical
state soil plasticity would require a single � value in the
steady-flowing zones of an annular shear, but here a range
of steady � values is present.
With rheological validation in hand, we take the same

model, predict flow profiles in different geometries, and
compare results to new DEM simulations. In order to
decrease the observed disturb of the velocity profiles near
the walls, we adopt rough walls composed by particles with
a diameter twice as large as the tested material. First, we
predict flow in a simple shear geometry with gravity point-
ing downward, orthogonal to the shear direction. The
apparatus has height H ¼ 40d, top and bottom rough
walls, and periodic boundary conditions on the sides.

FIG. 2 (color online). � vs I locus in steady annular shear:
(a) Nonlocal model (solid lines) compared to DEM for ~Vwall ¼
2:5 and ~R ¼ 25 (h), 50 (e), 100 (4), and 200 (�).
(b) Comparisons for fixed ~R ¼ 50 and ~Vwall ¼ 0:000 25 (h),
0.0025 (5), 0.025 (�), 0.25 (4), and 2.5 (e). The local rheology
(dotted line) is indicated, to which the nonlocal model ap-
proaches only in uniform stress environments [e.g., planar shear,
DEM data (w) of Ref. [8]].
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A pressure Pwall is applied to the top surface, and the top
wall is given a dimensionless lateral velocity of ~Vwall ¼
2:5. The wall shear stress S induced by the motion sets the
shear stress throughout: �xyðyÞ ¼ S. If we define a mean

solid fraction 	m, we can define the normalized weight
density of the granular media as ~wg ¼ 4mG	m=ðPwall
dÞ.
The vertical compressive stress increases downward due to
gravity, giving �yyðyÞ ¼ �Pwallð1þ ~wgy=dÞ. As before in
the Couette cell, we assume �yyðxÞ � �xxðxÞ, which turns

out to be well matched by the DEM. Likewise, �ðyÞ ¼
S=½Pwallð1þ ~wgy=dÞ�. We run DEM simulations for differ-

ent values of ~wg (0.04, 0.08, and 0.16). Comparisons be-

tween the DEM and nonlocal model’s flow fields are
presented in Fig. 3(b). Next, we consider gravity-driven
flow down a long vertical chute with rough parallel walls.
The walls are separated by a distance L ¼ 40d, and a wall
pressure Pwall is applied. The simulation utilizes periodic
boundary conditions at the top and bottom of the chute,
implying the Janssen limit where stress becomes vertically
invariant. Likewise, �xyðxÞ ¼ Pwall ~wgx=d by vertical force

balance, and, indeed, we see this formula upheld extremely
well in the stress field obtained from the DEM simulations.
Again, �yyðxÞ � �xxðxÞ ¼ �Pwall, which gives �ðxÞ ¼
j�xyðxÞ=Pwallj. We solve Eq. (5) as an ordinary differential

equation in x given the stress field as determined from the
choice of ~wg. Figure 3(c) demonstrates that the nonlocal

model captures the velocity field [displayed relative to the
center velocity vyðx ¼ 0Þ ¼ vcen] over several orders of

magnitude for different values of ~wg (0.0175, 0.02, and

0.0225).
While we desire the simplest possible flow relation,

quantitative accuracy is lost when assuming � � const as
in Ref. [9]; for any single value, we always find noticeable
deviations in the majority of test cases when plotted as in
Figs. 3(a)–3(c). Rather, Fig. 3(d) shows the �-dependent
nature of � by comparing DEM values inferred by using
Eqs. (3) and (5) to the relation in Eq. (4). An empirical fit
for �ð�Þ could be made to match data better for �>�s;
however, this is the inertial range where � has minimal
effect, and we prefer to keep with Eq. (4) for its connection
to existing theory. Also, in view of our observation that
steady-flow normal stresses along and perpendicular to the
shear plane are approximately equal (also observed in
Refs. [1,20]), it seems that the most general form would
be to append the coaxial flow condition D=jDj ¼ � 0=j� 0j
to the system, which closes the system of equations for
arbitrary geometries. Solutions could be computed by in-
cluding a small elastic component to the deformation and
going to the steady state with an elastoplastic finite-
element solver, as done in Ref. [3], with g added as a
nonlocal state variable. We should also point out that, in
focusing on the steady state, we leave out a description of
possible transient behavior; an unsteady version of Eq. (5)
ought to include a term proportional to _g, in line with other

FIG. 3 (color online). (a)–(c) DEM velocity profiles (symbols)
vs nonlocal model (solid lines). (a) Annular shearing (DEM data
from Ref. [8]): ~Vwall ¼ 2:5 and ~R ¼ 25 (e), ~R ¼ 50 (5), ~R ¼
100 (h), and ~R ¼ 200 (�). (b) Planar shear with gravity:
~Vwall ¼ 2:5 and ~wg ¼ 0:04 (e), 0.08 (v), and 0.16 (�).

(c) Vertical chute flow: ~wg ¼ 0:0175 (4), 0.02 (�), and

0.0225 (h). (d) Direct measurement of �2=d2 [by Eqs. (3) and
(5)] vs � from the DEM flow profiles in each geometry: Annular
shear ~R ¼ 50, ~Vwall ¼ 2:5 (5), shear with gravity ~wg ¼ 0:04

(�), and vertical chute ~wg ¼ 0:225 (h). The solid line shows

theoretical result using � �ð Þ from Eq. (4).
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approaches to nonlocal flow [11]. A study of the relation-
ship between the grain properties and the nonlocality pa-
rameters would be interesting future work. Last, this model
treats packing fraction � as a ‘‘slave variable,’’ because, in
the steady state, the work of Ref. [1] shows� ¼ �ðIÞ even
in inhomogeneous flow geometries [8]. However, for tran-
sient analysis, a correct update of � and its effect on �s

would be necessary.
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