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Soft bodies flowing in a channel often exhibit parachutelike shapes usually attributed to an increase of

hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid

membrane leads to the reverse phenomenon and build a phase diagram of shapes—which are classified as

bullet, croissant, and parachute—in channels of varying aspect ratio. Unexpectedly, shapes are relatively

wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in

this response to the asymmetry of stress distribution.
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The shape of soft bodies under flow is governed by
strong nonlinear coupling between hydrodynamic stresses
and elastic restoring forces. The latter are often linked with
specific interface properties, like surface tension, or bend-
ing and shear elasticity of an elastic or liquid membrane.

Awidely studied flow is the confined Poiseuille flow, in
which the behavior of red blood cells (RBCs) [1–4], drops
[5–7], lipid vesicles [3,4,8–10], capsules [11–16], or poly-
mers [17] is often considered. Underlying motivations
include a better understanding of blood flow or the possi-
bility to manipulate these objects in microfluidic devices
for lab on chip applications. The most commonly reported
stationary shapes are axisymmetric bulletlike and para-
chutelike shapes, the latter being characterized by a con-
cave rear part. The shape of this rear part is very sensitive
to the mechanical environment; therefore, observing it is a
(cheap) rheology experiment in itself, as exemplified in
Refs. [12,13], where possible membrane constitutive laws
for capsules are discussed. Similarly, in Ref. [14], the onset
of curvature inversion is shown to be strongly dependent on
the capsule’s prestress.

Alternatively, this shape will give indications on the
hydrodynamic stresses on the object. It is generally ob-
served that increasing the flow velocity, or the confine-
ment, leads first to an increase in the fore-aft asymmetry,
then to the apparition of a negative curvature region at the
rear, and eventually, at least for membraneless objects, to
breakup. Hydrodynamic interactions between neighboring
objects are also strongly correlated to shape-dependent
modifications of the local flow. In Ref. [4], small clusters
of RBCs are simulated, and two well separated states
(compact or loose clusters) are explicitly associated with
two different cell shapes (shallow or deep parachute). This
hydrodynamic cell aggregation is mediated by a loop of
fluid recirculation between cells, also called a bolus
[2,3,18], whose apparition or disappearance is intimately
correlated with shape changes [4]. Thus, understanding the
conditions for the apparition and stability of shapes and the
resulting flow patterns around them provides a valuable

entry point to build up hydrodynamic aggregation rules in a
suspension. At larger scale, this self-organization of the
suspension leads to specific rheological properties like the
shear thinning of blood or the Fårhæus-Lindquist effect
[19]. Even in the case of an isolated cell in a dilute
suspension, shape variations will modify viscous dissipa-
tion and, therefore, the effective viscosity of the suspen-
sion. Again, specific changes in this viscosity can be
associated with concavity changes at the rear and loss of
membrane tension [8].
In this Letter, we identify shape changes with flow

variations in the case of fluid vesicles, which are also
simplified models for RBCs. We shall see that the general
and therefore intuitive sketch of concavity increase with
hydrodynamic stress must be reconsidered in the case of
vesicles, which differ from drops or capsules by their
inextensible fluid membranes. We study explicitly the
effect of three flow characteristics: its velocity, the con-
finement, and its axial asymmetry.
The problem is considered through experiments, nu-

merical simulations, and theoretical calculations. In the
experiments, we use a polydimethylsiloxane microfluidic
device. Vesicles are prepared by following the standard
electroformation method, which produces vesicles of vari-
ous size and deflation. They are made of a dioleoylphos-
phatidylcholine lipid bilayer enclosing an inner solution of
sugar in water. Vesicles are then diluted in another sugar
solution and imaged by phase contrast microscopy. The
viscosity ratio between both solutions is close to unity.
Vesicles flow along the x axis in a straight channel of
constant thickness dz (z direction) and varying width dy
(y direction). Their cross section in the xy plane is observed
(Fig. 1). Gravity is in the x direction, so that quick center-
ing is achieved [10]. Each section of given width is long
enough for stationary shapes to be reached. The analytical
calculation is based on the decomposition of the shape in
spherical harmonics. For simplicity, we neglect the influ-
ence of channel walls and use for the velocity profile
vðy; zÞ ¼ V½1� ð2y=dyÞ2 � ð2z=dzÞ2�, which turns out to
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be a valid approximation for low confinements. As in
Ref. [20], solving the Stokes equations together with the
boundary conditions at the membrane and at infinity and
using the condition of stationary shape, we find expressions
for the amplitude of each considered harmonic as a func-
tion of �, Ca, and �. This method is much more efficient
than the traditional one, which is based on derivation and
numerical solution of the shape evolution equations [21].
We can now take 18 harmonics for the axisymmetric case
and 12 for elliptic cross sections. The accuracy of the
results was verified by 3D numerical simulations using
the boundary integral method [22]. Finding theoretical
and numerical approaches that fit the experimental results
up to the shape details is still a challenging issue, as
illustrated by the acute debate around phase diagrams of
vesicles under shear flow [22,23]. Here, we find excellent
agreements, as exemplified by the superimposition of
shapes in Fig. 2.

Fluid vesicles have constant volume and surface area.
Their deformability is directly linked to their initial (and

constant) deflation, given by the reduced volume � ¼
V =½4�ðS=4�Þ3=2=3�, where V and S are the vesicle
volume and membrane area, respectively. In the experi-
ments, both are calculated thanks to axial symmetry of the
shape in the square cross-section channel, on which we
comment later. The typical size of a vesicle is given by its

effective radius R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

S=4�
p

. The geometry of the problem
is characterized by two dimensionless numbers: the chan-

nel aspect ratio � ¼ dy=dz and the confinement R̂ ¼
2R=

ffiffiffiffiffiffiffiffiffiffi

dydz
p

. The capillary number, that compares viscous

stress to membrane elasticity, is defined by Ca ¼
V=ðdydzÞR4�=�, where V is the unperturbed fluid maxi-

mum velocity, � the fluid viscosity, and � the membrane
bending modulus.
Overall, the problem is described by the four dimen-

sionless parameters (�, �, R̂, and Ca). The explored ranges
are summarized in Table I.
Preliminary observation.—When vesicles flow from

narrow to wide sections (the thickness dz being constant),
their in-plane section becomes less asymmetric between
the front and the rear, and the negative curvature region at
the rear, if any, disappears (Fig. 1). The 2D shapes are
symmetric about the Ox axis [24]. A given vesicle flowing
several times back and forth in the square channel always
shows the same 2D shape, which indicates that it adopts, at
least, the square symmetry. Thanks to digital holographic
microscopy, we have recently seen that the vesicle’s trans-
verse cross sections are elliptical [26]. We then reach the a
priori nontrivial conclusion that the vesicle shape obeys
axial symmetry in a square geometry. We observe two
types of axisymmetric shapes, namely, parachute and bul-
let. We first investigate their existence domains in the
symmetric channel (� ¼ 1) and then explore the influence

of asymmetry for low constraints (R̂ � 0:5, Ca & 500).

Effect of Ca and R̂ in the symmetric channel.—For

weakly confined vesicles (R̂ � 0:5), clear separation be-
tween the bullet and parachute domains is achieved in the

ð�; CaÞ space, although R̂ varies by a factor of 4 [Fig. 3(a)].
A completely unexpected observation is the crossover from
parachute to bullet by increasing Ca for vesicles with a
reduced volume between 0.95 and 0.97. The same trend is
theoretically observed for unbounded flow. The full 3D
simulations support these results. We observe, however, a
slight shift in Ca between experiments and theory. This
could be attributed to uncertainties on the bending modulus
(not measured) and to effects of thermal fluctuations and
confinement, which were neglected in the theory. We have
checked that taking into account a possible spontaneous
curvature of the membrane has only a minor effect on the
results.

While, for weak confinement (R̂ � 0:5), the parachute to
bullet crossover depends on the capillary number but not
on the confinement, the situation is completely opposite for

 Experiments

 Numerical

 Theory

FIG. 2 (color online). Cross sections for two vesicles in sym-
metric flow (experiment, R̂ ¼ 0:38; simulation and theory, R̂ ¼
0). Left, � ¼ 0:979 and Ca ¼ 4191; right, � ¼ 0:946 and Ca ¼
3776. No fitting parameters.

TABLE I. Parameter ranges. For the experiments, � ¼
10�3 Pa � s, � ¼ 10�19 J, and V 2 ½10; 8300� �m � s�1.

� � R̂ Ca

Experiments 0.910–1 0.49–1.74 0.12–1.27 3� 7� 104

Theory 0.9–1 0.5–2 0 10� 6� 104

FIG. 1. Vesicle cross sections in a channel of increasing aspect
ratio. (a) � ¼ 0:913, R̂ ¼ 0:35, and Ca ¼ 59. (b) � ¼ 0:973,
R̂ ¼ 0:38, and Ca ¼ 81. R̂ and Ca are given for the square
section.
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more confined vesicles. As shown in Fig. 3(b), for R̂ � 0:5,

well separated domains are found in the ð�; R̂Þ plane,
despite the strong variations of Ca (more than three deca-
des). This indicates that when confinement is large enough,
its effect is dominant. Contrary to the intuition, the bullet
shape is favored upon an increase of confinement.

Effect of asymmetry.—We observed that, for a vesicle of
given reduced volume �, the 2D cross section and, in

particular, the concavity are independent of R̂ and Ca for

low constraint (R̂ � 0:5, Ca & 500) and depend only on

asymmetry � [27]. Because of this ðR̂; CaÞ independence,
the full 3D shape of a vesicle under flow of aspect ratio � is
deduced from its two in-plane shapes in the sections of

aspect ratios � and 1=�, where R̂ and Ca are different. For
instance, in Fig. 1(a), the shapes in sections � ¼ 0:79 and
� ¼ 1:27 ’ 1=0:79 can be seen as the top and side views of
the same vesicle in a rectangular channel of aspect ratio
0.79. We define �c as the aspect ratio of the channel where
the crossover from concave to convex 2D shape occurs. If
�c is larger than 1, as in Fig. 1(a), then, for 1 � �< �c,
the in-plane cross section of the vesicle is concave, and its
orthogonal cross section, for which we consider 1=� < �c,
is also concave. The 3D shape is therefore a parachute. If
� � �c, the in-plane shape is convex, while the orthogonal
shape is concave, since 1=� � �c. Such a ‘‘croissant’’
shape has been seen for drops between two infinite planes
[6]. If�c is lower than 1, as in Fig. 1(b), the same reasoning
shows that the 3D shape is a bullet for 1 � � � 1=�c and a
croissant for �> 1=�c. Some weakly deflated vesicles

show no concave shape in the explored � range and are,
therefore, always bullets. Combining all these data, we
deduce the general phase diagram in the ð�; �Þ space
(Fig. 4, restricted to � � 1 for symmetry reasons), which

is in good agreement with the theory for R̂ ¼ 0 and lowCa.
For � ¼ 1, one gets a parachute or a bullet shape; increas-
ing the asymmetry of the channel leads to the croissant
shape, which has a concave part in the plane of higher
stress.
Discussion and conclusion.—We reported the phase

diagram of vesicle shapes in Poiseuille flow in the relevant
parameter space. Our study reveals the necessity to distin-
guish between isotropic and anisotropic variations of the
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FIG. 3 (color online). Shapes for � ¼ 1. Dots refer to experimental data and the full line to theory and simulations. (a) Bullet-
parachute phase diagram in the ð�; CaÞ plane for not too confined vesicles (0:12 � R̂ � 0:5). Pictures in the inset (� ¼ 0:964, R̂ ¼
0:24, Ca ¼ 20 and � ¼ 0:959, R̂ ¼ 0:25, Ca ¼ 667) illustrate the concavity change as Ca increases. (b) Bullet-parachute phase
diagram in the ð�; R̂Þ plane. For R̂ � 0:4, Ca goes from 15 to 70 000, while for R̂ � 0:4, values are limited to the Ca < 100 range due to
shape dependency on Ca in the unbounded case. Pictures in the inset (� ¼ 0:938 and R̂ ¼ 0:49, 0.69, and 0.89) illustrate the concavity
change as R̂ increases.
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FIG. 4 (color online). Shape diagram in asymmetric channel at
low constraint. Experiment: Each point corresponds to a vesicle
with R̂ � 0:5 and Ca & 500 when � ¼ 1. Theory: R̂ ¼ 0 and
Ca � 1000.
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cross section of the channel. While the evolution shown in
Fig. 1 is consistent with expectations (increasing confine-
ment leads to more curved shapes), increasing isotropically
the confinement leads actually to less curved shapes, as
shown by shapes in the inset in Fig. 3(b). The same con-
clusion is reached if the flow strength is increased at a
given confinement. Theoretical and numerical results sup-
port these conclusions, for symmetric but also for asym-
metric flows: As shown in Fig. 4, the less distorted bullet
and croissant shapes are favored against the parachute
shape upon increasing flow strength. Figure 5 summarizes
our main finding; isotropic expansion [Figs. 5(a) and 5(c)]
leads unexpectedly to more shape distortion, while in-
plane-only expansion [Figs. 5(b) and 5(c)] leads to a less
curved shape. In that case, the asymmetry between the two
transverse directions allows us to relax the constraints of
perimeter and surface conservation at the level of a given
longitudinal cross section, whose evolution is therefore
similar to the one of a drop or a capsule. Finally, the
predominant role played by the aspect ratio of the channel
is illustrated by the concavity increase through out-of-
plane-only expansion [Figs. 5(a) and 5(b)], which then
appears to be equivalent to an in-plane contraction. The
latter case also indicates that a sole 2D view in experiments
might lead to biased considerations when discussing the
existence of parachutes, as in Ref. [28].

In asymmetric channels, vesicle shapes exhibit another
unexpected feature: As seen in Fig. 1 and in Ref. [27], their
in-plane width does not increase with dy but is roughly

constant. Therefore, contrary to drops [7], vesicles do not
adopt the aspect ratio of the channel but occupy a space in
the yz plane that is delimited by a circle. The fact that the
fluid then has to go through a small gap in the narrowest
width of the channel may lead to the intuitive but wrong
conclusion that the vesicle should decrease its extent in that
direction (and follow more or less the channel aspect ratio).
In order to get an insight on this peculiar phenomenon, we
investigated the patterns of membrane surface flow through
simulations (Fig. 6). As soon as the channel is asymmetric,
4 vortices appear on the surface with a backward flow in
the direction corresponding to the narrowest gap, which

decreases the mean shear in the gap and the viscous stress
on the membrane. The opposite takes place in the other
direction, leading to a more homogeneous stress distribu-
tion. When drops adopt the channel cross section, all
material points on their surface are advected backward
[27]. The corresponding flow line possesses two in-plane
stagnation points at the front and at the back, on the main
axis. This apparent singularity is resolved for drops
through recirculation inside the drop, a fact that is pre-
cluded for a membrane whose material points must stay on
the surface. This difference has already been underlined for
drops and vesicles bounded to a substrate and submitted to
shear flow [29]. The 4-vortex pattern is thus the simplest
acceptable flow pattern on the vesicle surface, if we con-
sider that zero flow situation is unlikely to happen for this
fluid membrane under asymmetric constraint. This pattern
can be compared to the one obtained recently for vesicle
sedimentation [30]. Despite the axial symmetry of the
problem, it is shown that a croissant shape with four
vortices on its surface is a possible stationary shape.
However, the stability of this solution is not discussed.
Flow asymmetry, which can be due to the channel

geometry or to the presence of neighboring cells, will
have therefore two consequences: From the rheological
point of view, surface vortices of non-negligible velocity
(see Fig. 6) imply important motions of the fluid inside the
vesicle (or the RBC) that will contribute to the net dis-
sipation. These vortices, that would not be caught, for
instance, by 2D simulations, will also affect accordingly
the flow field around the membrane, which will modify in
return the recirculating loop between cells. Whether this
mechanism would be a stabilizing or destabilizing factor in
cell clusters, that often exhibit symmetry breaking [3],
remains to be discussed.
We acknowledge financial support from CNES and the
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FIG. 5. Cross sections for the same vesicle (� ¼ 0:985) in
three channels. (a) dy ¼ dz ¼ 83 �m; (b) dy ¼ 83 �m, dz ¼
92 �m; (c) dy ¼ dz ¼ 92 �m. (a) and (b) give indications on

what would be seen in the xz plane of Fig. 1(b).

FIG. 6 (color online). Velocity field in the vesicle comoving
frame. Side (a) and rear (b) view. Simulations, � ¼ 0:95, Ca ¼
100, and � ¼ 1:2 (croissant shape). The norm of velocity is
color-coded. Maximum velocity is about 5 times lower than
vesicle velocity. See also [27].
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