
Eigenmodes in the Long-Time Behavior of a Coupled Spin System Measured
with Nuclear Magnetic Resonance

Benno Meier, Jonas Kohlrautz, and Jürgen Haase

University of Leipzig, Faculty of Physics and Earth Science, Linnéstrasse 5, 04103 Leipzig, Germany
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The many-body quantum dynamics of dipolar coupled nuclear spins I ¼ 1=2 on an otherwise isolated

cubic lattice are studied with nuclear magnetic resonance. By increasing the signal-to-noise ratio by 2

orders of magnitude compared with previous reports for the free induction decay (FID) of 19F in CaF2 we

obtain new insight into its long-time behavior. We confirm that the tail of the FID is an exponentially

decaying cosine, but our measurements reveal a second decay mode with comparable frequency but twice

the decay constant. This result is in agreement with a recent theoretical prediction for the FID in terms of

eigenvalues for the time evolution of chaotic many-body quantum systems.
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One of the simplest NMR experiments concerns the
flipping and recording of the nuclear magnetization, i.e.,
the measurement of the free induction decay (FID). Quite
to the contrary, rigorous theory to calculate this decay is
often lacking since large numbers of nuclear spins are
interacting, similar to the situation in electronic magnetism
with exchange coupled electronic spins. Often, one can
only estimate the short-time behavior of the FID, but is
unable to find an analytical expression for the entire decay.
If the FID is limited by the lifetime of the nuclear levels
due to a coupling to a thermal bath, the ‘‘lattice,’’ the decay
is simply exponential and given by the spin-lattice relaxa-
tion time T1. This can be the case in liquids where rapid
motion averages, e.g., the internuclear magnetic dipole-
dipole interaction, but, at the same time, couples the
nuclear spins to the large thermal bath of motional degrees
of freedom. In solids, where the spin-lattice relaxation time
is often rather long, the magnetic dipole interaction leads to
a rapid decay of the FID leaving the spin system far away
from thermal equilibrium for times of the order of T1. In
this case, where the FID or other spin coherences decay
according to the time evolution of the acting Hamiltonian,
one expects on general grounds the decay not to be
exponential. However, that is what is often observed with
experiments [1–4].

An ideal system for the investigation of dipole coupled
nuclear spins is CaF2 where spin 1=2 fluorine nuclei are
located on a simple cubic lattice (the low abundance, small
moment Ca spins can be neglected). Clean crystals are
easily available with a nuclear spin-lattice relaxation time
T1 of minutes, which practically leaves only one relevant
time scale set by the dipolar coupling (� 20 �s). Given the
simple nature of the material and the challenging physics,
there has been persistent interest in CaF2 since the early
days of magnetic resonance [1–3,5–9].

While most experimental and theoretical work focussed
on the short-time behavior of the dynamics [1,5,10–12],
more recent research concerns the long-time behavior of

NMR signals [13–16]. In particular, in recent work of Fine
[15,16], the long-time behavior of the system is addressed
based on the notion of microscopic quantum chaos.
The dynamics of a lattice of classical spins can be

described by a set of angles f�i; �ig where the ith pair of
coordinates describes the orientation of the ith spin with its
tip on the surface of a sphere. In the case of a dipole
coupled system, the equations of motion controlling the
time evolution of the system are nonlinear. For a large
number of spins this eventually leads to a phase space
that is dominated by chaotic regions. While a Markovian
description of such a system is usually applicable only for
times much larger than the mean free time, this is not true
for ensemble averaged quantities [17]. An ensemble of
spins can therefore be described in terms of Brownian
motion as soon as the spin system has lost memory of its
initial configuration. Thus, the long-time behavior of the
ensemble averaged quantities can be obtained by solving a
correlated diffusion equation on a spherical surface [15].
This approach is to be contrasted with chaotic dynamics

of the magnetization in liquids. Here, the local field gen-
erated by the distant dipole field as well as the radiation
damping field may cause a turbulent behavior of the mac-
roscopic magnetization [18,19]. While chaotic dynamics in
liquids are discussed in an entirely classical picture, the
microscopic diffusion concept for solids has recently been
generalized to quantum spins by Fine [15,16]. He predicted
a universal long-time behavior of the FID and the decay
after a spin echo.
For a system of spins 1=2 on any Bravais lattice with the

dipolar Hamiltonian
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n@
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in a strong magnetic field (so that only the secular part
has to be retained) the long-time behavior is given by
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GðtÞ ’ P
�e

���t cosð!�tþ��Þ. This reduces to a single
mode after sufficiently long times, i.e.,

GðtÞ ’ e��1t cosð!1tþ�1Þ: (2)

In related work, the long-time behavior is referred to as that
part of the FID that is determined by the slowest mode
only. In the experiment, this description holds after the
second slowest mode has disappeared in the noise. Thus,
the beginning of the long-time behavior would be set by the
noise level. In this Letter, we consider the long-time be-
havior to correspond to that part of the FID where chaos
has developed, i.e., the part that is given as the sum of all
modes. The number of detectablemodes is set again by the
signal-to-noise ratio (cf. Fig. S1 in the Supplemental
Material [20]).

In the above conjecture, the decay modes in GðtÞ
follow from a set of solutions of a correlated surface
diffusion equation in the finite parameter space of single
spin variables: f�ðt; xÞ ¼ e���tu��

ðxÞ, where �� ¼ �� þ
i!� is an, in general, complex eigenvalue of the integro-
differential operator associated with the modified diffusion
equation and u�ðxÞ its corresponding eigenfunction. In
particular, the conjecture proposes that �� does not depend
on the initial configuration of the spin system. It was
argued by Fine [15] that due to the Markovian nature of
ensemble averages [17] one expects not only the decay
constant of the slowest mode (� ¼ 1) to be of the order of
the inverse decay time, i.e., �1 � 1=�, but also the differ-
ence to the second slowest exponent should be of the order
of 1=�, i.e., �2 � �1 � �1. There are no predictions for!2.

The early work of Engelsberg and Lowe [2] is in rea-
sonable agreement with this theory, but inconclusive with
regard to the predictions above, which triggered new
experiments with hyperpolarized polycrystalline solid xe-
non for better signal-to-noise ratio [4] and CaF2 [3]. The
experiments show that the long-time behavior is indeed
universal since it does not depend on various initial prepa-
rations of the spin system, in agreement with Fine’s theory.
However, only a single mode �1 in the exponential decay
was found. In solid xenon, the isotropic averaging over all
crystal orientations makes the direct observation of an
isolated second mode unlikely [21].

Here, we report on new experiments on CaF2 that, due to
the increase in signal-to-noise ratio by 2 orders of magni-
tude over previously reported experiments, reveal a second
decay mode in agreement with Fine’s predictions [15,16].
Therefore, our results favor his theory over other theories
using a memory function approach [13], since these predict
only a single mode.

The 5� 5� 10 mm3 CaF2 crystal was obtained from
Mateck, Germany. Impurities are stated to be below 2 ppm.
The crystal was oriented by x-ray diffraction. A home-built
NMR probe was used in order to align the crystal’s axes
(110) or (100) parallel to the applied magnetic field
(7.06 T). The probe was set to a resonance frequency of

283.383 MHz and operated at 20 K. The quality factorQ of
the resonance circuit was 240, the �=2 pulse length was
5 �s. The T1 at 20 K was determined to be 76 s.
With typically 80 scans our maximum signal-to-noise

ratio was about 106. In order to record the signal, various
attenuations were used to prevent the preamp from satu-
rating and to allow for an appropriate load of the 16 bit
digitizer. Additionally, the first 20 �swere measured using
a spin-locking sequence [22]. Finally, the tail of the FID
was measured with the variable attenuator set to zero but
still in front of the preamp to minimize additional phase
shifts. The composition of the FID is described in greater
detail in the Supplemental Material [20].

FIG. 1 (color online). Free induction decay of 19F in a CaF2
single crystal (black solid line) for B parallel (110) at 7.06 T. The
real part of the FID shown in (a) changes sign at each of the
minima in the logarithmic plot of its magnitude shown in (b).
The first 20 �s of the FID were measured using a spin-locking
technique, cf. [22]. The time intervals 20 to 57 �s and 58 to
87 �s where measured at 20 K with 25 and 12 dB attenuation
in front of the preamp, respectively. The tail of the FID was
measured without attenuation. The signal was corrected for the
inhomogeneous decay as measured by C6F6 as well as for a
small residual offset (700 Hz) that was precisely determined
from the time dependence of the signal’s phase. The data are in
good agreement with Engelsberg and Lowe’s measurements but
have nearly 3 orders of magnitude better signal-to-noise ratio.
Because of the higher signal-to-noise ratio, we were able to fit
the FID to Eq. (2) in the time frame 160 to 250 �s (shaded in
gray).

PRL 108, 177602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 APRIL 2012

177602-2



In order to determine and remove the influence of the
inhomogeneous magnetic field on the decay, we measured
a 19F FID on a C6F6 sample (intrinsic T2 � 1 ms) of about
the same volume and geometry as the crystal. On the time
scale of the CaF2 FID the 19F decay could be approximated
by a Gaussian with a standard deviation of 632ð3Þ �s. The
CaF2 data were hence multiplied with a rising Gaussian
function to remove the inhomogeneous broadening.
Although this procedure increases the noise level towards
the end of the FID, this is a very minor effect with a
correction of only 8% for the data point at 250 �s; hence,
we did not apply any filter to correct for it. Since the
linewidth hampers a precise determination of the exact
resonance frequency by means of a simple Fourier trans-
form, the actual offset was determined by analyzing the

time dependence of the phase �ðtÞ of the complex valued
FID. The offset of 700 Hz was removed from the FID.
Phase changes due to the variable attenuator were taken
into account.
The resulting signal is shown in Fig. 1, linear (a) and

logarithmic scale (b). The time origin of the FID was
assigned to the center of the �=2 pulse. The large dynamic
range of the FID is only seen in the logarithmic plot in
Fig. 1(b), where we show the magnitude of the NMR
signal’s real part.
We find good agreement with Engelsberg and Lowe

for times accessible within their experiment, i.e., up to
150 �s, cf. solid green curve in Fig. 1(b). The dotted
blue line in Fig. 1(b) is a fit according to Eq. (2) based
on our decay between 160 and 250 �s using the non-
linear Levenberg-Marquardt algorithm as implemented in
MATLAB [23,24]. The algorithm returns estimates, the

residuals, the Jacobian, and a covariance matrix for the
fitted parameters. The 95% confidence intervals as speci-
fied in Table I are obtained as a� ts where t is derived
from Student’s t distribution using the degrees of freedom
and the required confidence and s is the standard error, i.e.,
the square root of the corresponding diagonal element of
the covariance matrix. The fit window was chosen since we
may expect a faster second mode and since the algorithm
should not operate in low signal-to-noise ratio. We verified
that a slight change in the starting point did not change the
obtained fit parameters significantly. The obtained values
are given in Table I as FID (110) �1 (see Table S2 in the

TABLE I. Obtained values for � and !. All values were
obtained using a nonlinear least squares approximation. For
the FID at 20 K, deviations from the fit are due to thermal noise
(cf. Fig. 2); hence, 95% confidence intervals were estimated
from the covariance matrix.

Measurement � (ms�1) ! (radms�1)

Engelsberg 43.0(1) 101.9(5)

Sorte 43.3(1) 106.2(1)

FID (110) �1 40.3(2) 103.5(2)

FID (110) �2 92(3) 85(1)

FID (100) �1 48.4(3) 154.0(2)

FID (100) �2 109(2) 142(2)

FIG. 2 (color online). Extraction of two decay modes from the FID for B parallel to (110). (a) After subtracting the fit or first mode
f1 as determined by fitting the tail of the FID (cf. Fig. 1) to Eq. (2) in the time interval 160 �s to 250 �s, a second mode f2 becomes
apparent. This mode is replotted in (b) along with a fit according to Eq. (2) in the time interval 76 to 136 �s (shaded in gray). The fit
reveals that the decay constant �2 of the second mode is about a factor of 2 larger as compared to the first mode while the obtained
value for ! differs rather slightly from the first mode’s value. The solid gray line is left after subtracting both modes from the FID and
reveals that within experimental resolution the FID is accurately described by f1 þ f2 for times greater than 75 �s or for a decay over
4 orders of magnitude.
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Supplemental Material [20] for all parameters and error
estimates). We find a significant deviation between our
value (�1 ¼ 40:3 ms�1) and the ones determined from
Engelsberg and Lowe’s data, but also those by Sorte
et al. (� 43 ms�1). We also note a substantial difference
between the fit (dotted blue line) and the data for shorter
times. This is shown more clearly in Fig. 2(a) where the
dashed green curve is the difference between the actual
decay and the fit to the long-time decay (first mode �1 ¼
�1 þ i!1). Clearly, the dashed green curve in Fig. 2(a) is
strong evidence for Fine’s second mode, since it is
approximately exponential with a decay rate of roughly
2�1 (it disappears in the noise at about 140 �s while the
first mode has disappeared at 300 �s). Note that this result
could not be obtained by earlier measurements due to the
lower signal-to-noise ratio that did not permit a fit at
sufficiently long times. The significantly higher values
for � obtained from earlier measurements are due to the
influence of the second mode.

The parameters of the second mode (dashed green
curve) in Fig. 2(a) are estimated from a fit to Eq. (2)
between 75 and 135 �s, shown as a dotted blue curve in
Fig. 2(b). The solid gray curve in Fig. 2(b) shows the
residuum, revealing that the FID can be described accu-
rately in terms of two modes for times greater than 70 �s.
The estimates for the second mode are given as FID (110)
�2 in Table I.

While we are convinced that the dashed green curve in
Fig. 2(a) is evidence for Fine’s second mode, we decided
on an independent check, i.e., the measurement of the FID
of CaF2 for a different orientation of the crystal with

respect to the applied magnetic field. The resulting
data and analysis are summarized in Fig. 3. Because
of the dependence of the secular part of the dipolar
Hamiltonian on the orientation of the applied magnetic
field, different shapes of the FID are obtained for different
orientations. For the (100) orientation the FID decays
faster and oscillates at a higher frequency. The data can
again be understood in terms of two modes with the decay
rate of the second mode being about 2 times larger than the
rate of the first mode. The fit results for both modes are
given in Table I.
To conclude, we have studied the long-time behavior of

a macroscopic system of dipole coupled spins 1=2. The
data are interpreted in terms of Fine’s theory based on the
notion of microscopic chaos. While earlier work is in
agreement with this theory, so far only a single decay
mode was found. Therefore, it is difficult to discriminate
other theories using a memory function approach. By
increasing the signal-to-noise ratio by 2 orders of magni-
tude, compared to so far available measurements, we can
determine the first decay mode with high accuracy. After
subtracting this mode from the FID we are left with a
second decay mode that decays about 2 times faster than
the first mode. Our findings thus support Fine’s theory that
predicted a well-isolated second decay mode and correctly
estimated the difference between the decay rates of the first
and the second mode.
As similar accounts in support of Fine’s prediction will

be given, one can hope that theory will eventually be able
to predict the parameters of the observed modes from the
Hamiltonian of the system.

FIG. 3 (color online). The same plot as in Fig. 2 but for B parallel to (100). The FID (a) is again measured with different attenuations;
the first 23 �s are measured using a spin-locking sequence, the time intervals 24 to 51 �s and 52 to 111 �s are measured with 25 and
12 dB, respectively. AGaussian line narrowing of 426 �s was applied to remove the influence of the field inhomogeneity. The fit of the
first mode f1 is performed in the time interval 100 to 200 �s. The residue, shown as a dashed green line in (a), reveals that in this time
interval the data are well described by a single mode and again show oscillatory decaying behavior for earlier times. This oscillatory
behavior can well be described in terms of a second mode f2, plotted in (b), with a decay rate about 2 times the first mode’s rate.
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