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We demonstrate the presence of Dirac cones in the dispersion relation of acoustic waves propagating on

the surface of a plate of methyl methacrylate containing a honeycomb lattice of cylindrical boreholes. This

structure represents the acoustic analogue of graphene, the cylindrical cavities playing the role of carbon

atoms while acoustic surface waves are the equivalent of electronic waves in graphene. Analytical

expressions for the Dirac frequency and Dirac velocity in acoustics are given as a function of the radius

and depth of boreholes. These parameters have been experimentally determined for a constructed structure

and the data are in fairly good agreement with the predicted values.
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Graphene is a monolayer of carbon atoms densely
packed in a honeycomb lattice [1]. Among other interest-
ing properties, the electronic dispersion relation near the
corners of the hexagons forming the Brillouin zone (BZ)
becomes conical and the dynamics of electrons can be
described by Dirac’s equation for massless relativistic
particles [2]. This feature in the dispersion relation, where
two bands touch as a pair of cones, is referred as Dirac
cones and the touching point as the Dirac point.
This conical singularity has important symmetry properties
and it is the responsible of relevant electronic effects like
Andreev reflection and Klein’s tunneling [3],
Zitterbewegung (‘‘trembling motion’’) [4] and negative
refraction [5].

Dirac cones appear not only in the electronic bands of
graphene, but also in the dispersion relation of electromag-
netic (EM) waves propagating trough periodic dielectric
structures, for example, in two dimensional (2D) photonic
crystals [6–9], as well as for three dimensional (3D) pho-
tonic crystals [10–13]. Many interesting applications of
these EM structures have been reported, like optical wave-
guides with broken time-reversal symmetry [14], photonic
analogues of quantum-Hall effects [15] and positive-zero-
negative metamaterials [16].

Dirac cones have been also characterized in the disper-
sion relation of acoustic waves propagating in a 2D hex-
agonal lattices of rigid cylinders embedded in water, where
the phenomenon of extremal transmission through finite
slabs have been analyzed [17]. Recently, a monolayer of
silica spheres in water has been proposed as an acoustic
analog of graphene and its dispersion relation has been
theoretically studied [18]. However, no experimental de-
termination of the dispersion relation near the Dirac point
has been reported up to date and the dynamics of acoustic
waves near the Dirac point has not been analyzed till now.

In this Letter we demonstrate analytically and confirm
experimentally the presence of Dirac cones in the disper-
sion relation of acoustic waves propagating on a surface
containing a honeycomb lattice of cylindrical boreholes

drilled in a plate of methyl methacrylate (Plexiglas). We
will show that the structure of perforated cavities and the
surface acoustic waves that they subtend represent the
acoustic analogues of carbon atoms and electronic waves,
respectively, in graphene. Analytical expressions of the
parameters defining the cone—the Dirac frequency and
the Dirac velocity—have been obtained as a function of
the cavity parameters (radius and depth). Moreover, we
also demonstrate that the secular equation near the Dirac
point is equivalent to the 2D Dirac equation for massless
relativistic particles, but being the radius and depth of the
boreholes the parameters that are analogous to the electro-
static potential. Our model predictions are supported by a
direct measurement of the dispersion relation of the acous-
tic surface waves.
Figure 1 shows the scheme of the honeycomb lattice of

boreholes drilled in a Plexiglas plate, which behaves as an
acoustically rigid solid (no elastic waves are excited inside
it). This crystalline structure is obtained by repeating the
hexagonal unit cell containing two identical boreholes �
and �. The primitive vectors a1 and a2 define the unit cell
and the presence of two equivalent scatterers creates, as it
is shown later, a doubly degenerated band structure, re-
sponsible of the presence of Dirac cones at the edges of the
Brillouin zone as in the case of electronic graphene.
Let us start with the acoustic analogue of electrons

traveling in graphene. They are acoustic waves confined
in the plate’s surface. Therefore, for a frequency !, we
seek for wave solutions confined in the surface, z ¼ 0, with
the form

c ðrjj; z;!Þ ¼ X
Gjj

AGe
��GzeiðGjjþKjjÞ�rjj ; z � 0; (1)

where Gjj ¼ h1b1 þ h2b2 represent the vector of the

reciprocal lattice, b1 and b2 are the primitive vectors in
the reciprocal space, and Kjj ¼ Kjjð!Þ represents 2D

Bloch’s wave vectors.
The guiding characteristics of the acoustic surface waves

is preserved when
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�2
G ¼ jGjj þKjjj2 � ð!=cbÞ2 > 0; (2)

being cb the speed of sound in air. This condition limits the
solutions to values inside the so-called ‘‘light cone’’
jKjjð!Þj>!=cb.

For the pressure field inside the boreholes cavities we
consider that only the fundamental mode is excited [19]
and therefore

c �ð�Þðz;!Þ ¼ B�ð�Þ cos
!ðLþ zÞ

cb
; (3)

where the subindex � and � represent the two types of
boreholes inside the unit cell and L is their depths. Since
the plate is rigid we consider that @zc iðz ¼ �LÞ ¼ 0, for
i ¼ �, �.

In order to obtain the band structure we apply the mode
matching technique [20] to the unit cell, so that we solve
for the AG coefficients and arrive to the following secular
equation for the eigenvectors B� and B�,

cot!L=cb � f��� �f���

�f��
�� cot!L=cb � f���

 !
B�

B�

� �
¼ 0;

(4)

where f is the fraction of volume occupied by the cylin-
drical cavities; that is, the area of the boreholes divided by
the area of the unit cell, and ��� ¼ ���ð!;KÞ are the

following overlapping functions,

��� ¼ X
Gjj

k0
�Gjj

H�ðGjjÞH�
�ðGjjÞ (5)

with

H�ðGjjÞ ¼ eiðKjjþGjjÞ�R�
2J1ðjKjj þGjR0Þ
jKjj þGjjjR0

; (6)

where J1 are the Bessel function of first order and k0 ¼
!=cb is the wave number in air (see details in [19]).
The solution of the secular equation (4) is given by the

following transcendental equations:

cot
!L

cb
¼ ð��� � j���jÞf; (7)

where the � signs appear as a consequence of having two
cavities per unit cell.
These two equations can be solved for a particular pair

of values (R0, L) to generate the corresponding acoustic
bands !ðKjjÞ like those shown in Fig. 2 that has been

obtained using R0 ¼ 0:26a and L ¼ 0:5a, where a is the
lattice constant (see Fig. 1). Only the dispersion relation of
guided modes, jKjjj>!=cb, is shown. The inset shows a

zoom at the neighborhood of the Dirac point K, the touch-
ing point between the two conical bands. It is in the
frequency region near the Dirac frequency, !D, where
the analogy between surface acoustic waves and electrons
in graphene occurs and, therefore, it is the frequency region
that will be analyzed in what follows.
The inset in Fig. 2 shows that the dispersion relation

becomes linear in the neighborhood of the Dirac point. The
linear behavior is clearly observed in the upper branch
while, for the lower branch, it becomes linear only near
the K point. Therefore, an expansion of the band structure
around this point will lead to a linear relation between !
and K. The demonstration is too long to be included here,
but it is described in the Supplemental Material [19]. In
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FIG. 2 (color online). Band structure of the acoustic surface
waves propagating on a honeycomb lattice of boreholes drilled
in a Plexiglas plate. The radius and depth of the boreholes are
R0 ¼ 0:26a and L ¼ 0:5a, respectively, where a is the lattice
constant of the underlaying hexagonal lattice (see Fig. 1). The
upper right inset shows the Brillouin zone with the high sym-
metry points. The central inset shows a zoom of the dispersion
relation around the Dirac point.

FIG. 1 (color online). Schematic view of the acoustic graphene
studied in this work. It consists of a honeycomb lattice of
boreholes drilled in a rigid plate. a1 and a2 represent the
primitive vectors of the hexagonal unit cell containing two
acoustic cavities. The distance between nearest neighbors d ¼
jR��j ¼ a=

ffiffiffi
3

p
, where a ¼ ja1j ¼ ja2j.
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brief, the derivation starts with the secular equation (4),
where the term cot!L=cb is expanded up to the first order
in �!, where �! ¼ !�!D. In the same manner, the
terms ��� are also expanded up to the first order in �!

and �K, where �K ¼ Kjj �KD. After a lengthy derivation

Eq. (4) becomes

�!=cD �K � ðx̂þ iŷÞ
�K � ðx̂� iŷÞ �!=cD

� �
B�

B�

� �
¼ 0: (8)

This equation is the Dirac equation in the 2Dmomentum
space, and it shows that the linear combination of surface
waves described by equation (1) can be described, in the
neighborhood of the Dirac point KD, by a single wave
propagating with wave vector �K and satisfying the above
equation. Note that to obtain the equation in differential
form we should replace �K by the differential operator
�ir, and we will recover the eigenvalue equation with
eigenvalues �!=cD and eigenvectors B�, B�.

The values for the Dirac frequency !D and Dirac veloc-
ity cD are obtained from the Taylor expansion of the terms
��� and some tedious algebra, as explained in [19], where

expressions for !D and cD as a function of R0 and L are
obtained.

Figure 3 shows !D (upper panel) and cD (lower panel)
as a function of boreholes’ depth L=a for a fixed radius
R0 ¼ 0:26a. Note that increasing the length L of boreholes
decreases either !D as well as cD. The former decreases
because the deeper the boreholes, the larger the wavelength
of the fundamental mode of the hole, which is related to
Dirac frequency through Eq. (7). The later decreases as a
direct consequence of the decreasing of Dirac frequency,
since this velocity is the slope of the line going from (0, 0)
to (KD, !D) in the band structure.

To demonstrate the linear dispersion relation j�Kj ¼
�j!�!Dj=cD resulting from Eq. (8), and to confirm

the values of !D and cD resulting from our semianalytical
theory [19], we have carry out experiments on a Plexiglas
plate with cylindrical perforations distributed in a honey-
comb lattice. A total of 1113 boreholes were drilled in a
plate of dimension 300� 100 mm. The lattice constant is
a ¼ 5:77 mm, being the distance between boreholes d ¼
3:33 mm. The radius and depth of the boreholes are R0 ¼
1:5 mm ¼ 0:26a and L ¼ 2:88 mm ¼ 0:5a, respectively.
With these parameters and using cb ¼ 346 m=s the pre-
dicted values of Dirac’s frequency and velocity are �D ¼
!D=2� ¼ 22 kHz and cD ¼ 29:06 m=s. In reduced units,
these values correspond to the symbols in Fig. 3, which are
!Da=2�cb ¼ 0:367 and cD ¼ 0:084cb � cb=12, which
means these waves travels about 12 times slower than
they do in free space.
The experimental set up is shown in Fig. 4. The tweeter

at grazing incidence excites acoustic surface waves as
explained in [21], whose relative phase is measured by
two microphones located at 1 mm over the surface. The
excited sound field is a Gaussian pulse with central fre-
quency �0 ¼ 22 kHz, and width �� ¼ 5 kHz, so that the
predicted Dirac frequency is included in the frequency
range of the time signal. A total of 500 averaged spectra
are taken by microphones 1 and 2, then from the angle of
the cross spectrum the phase delay is obtained.

0 0.2 0.4 0.6

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6

0.1

0.2

0.3

0.4

FIG. 3 (color online). Dirac frequency (upper panel) and Dirac
velocity (lower panel) as a function of boreholes depth L. Both
graphs are obtained for a fixed boreholes radius of R0 ¼ 0:26a.
The circles indicates the values at L ¼ 0:5a, which is the value
used in the sample characterized.

FIG. 4 (color online). Picture of the experimental setup. A
loudspeaker at grazing incidence is employed to excite acoustic
surface waves propagating on a Plexiglas plate with cylindrical
boreholes distributed in a honeycomb lattice. Boreholes appear
in the picture as white points due to refraction of light. The inset
shows a schematic view of the boreholes geometry. Two micro-
phones located at different points on the surface measure the
phase delay between the propagating surface waves.
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The inset in Fig. 5 shows the unwrapped phase delay,
where it can be observed a minimum near 22 kHz that
corresponds to the vertex of the Dirac cone, defining there-
fore the Dirac frequency. Note the excellent agreement
between theory and experiment at the frequencies near
the Dirac frequency, where the dispersion relation is
clearly linear,

k ¼ jkj ¼ 2�
j�� �Dj

cD
; (9)

where k is the wave number and �D is the Dirac linear
frequency. The absolute value in the difference between the
frequency and the Dirac frequency is the responsible of the
local minimum, which is a peculiarity of a Dirac cone. This
dispersion can be obtained from the phase delay between
the two microphones �� ¼ ��ð!Þ given by

��ð!Þ ¼ k � r12 ¼ jkjjr12j cosð�0 � �12Þ; (10)

where �0 and �12 are the angles between the x axis and
vectors k and r12, respectively, the last one being the vector
going from one microphone to the other one. Note that the
phase delay at the Dirac frequency is not necessary an
integer of 2�, since the full wave is modulated by a factor
expðiKD � r12Þ. The symmetry of our setup suggests that
three of these angles are possible, �0 ¼ ��=3 and �0 ¼ 0,
corresponding to the three directions �K that can be
excited.

Figure 5 shows the dispersion relation obtained in this
way as a function of frequency assuming that �0 ¼ ��=3.
The fairly good agreement between theory and experiment
indicates that this is the dominant mode. Note that
frequencies above 23 kHz are outside the ‘‘light cone’’
and, therefore, the measured dispersion relation does not

correspond to guided waves. Results below 18 KHz are not
displayed because our excitation signal is a Gaussian pulse
and that region corresponds to weak time signal with noise
playing a dominant role.
In summary, it has been shown that acoustic waves

propagating on the surface of an acoustically rigid surface
with cylindrical cavities arranged in a honeycomb lattice
present a dispersion relation that is similar to that of
electrons in graphene. In other words, it is possible to
characterize Dirac cones at the edges of the Brillouin
zone. Also, we have demonstrated that the dispersion
relation near these points can be obtained from a Dirac-
like equation and that the Dirac frequency and velocity are
functions of the cavity radius and depth. Experimental
validation of the theory has been performed by a simple
measurement of the phase delay between two points on the
surface of a sample constructed with Plexiglas. Since the
theory presented here is fully scalable, this work paves the
road to translate the interesting phenomena discovered
with electrons in graphene to the case of surface acoustic
waves propagating in acoustic graphene, which can be
fabricated in different length domains, from microscopic
to macroscopic dimensions.
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FIG. 5 (color online). Dispersion relation of the acoustic sur-
face waves guided in a Plexiglas plate with a honeycomb array of
cylindrical perforations. The inset shows the phase delay be-
tween the two microphones employed in the experimental setup
(see Fig. 4). Note that the origin of the horizontal axis actually
corresponds to the K point of the Brillouin zone.
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