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The spin angular momentum in an elliptically polarized beam of light plays several noteworthy roles in

optical traps. It contributes to the linear momentum density in a nonuniform beam, and thus to the

radiation pressure exerted on illuminated objects. It can be converted into orbital angular momentum, and

thus can exert torques even on optically isotropic objects. Its curl, moreover, contributes to both forces and

torques without spin-to-orbit conversion. We demonstrate these effects experimentally by tracking

colloidal spheres diffusing in elliptically polarized optical tweezers. Clusters of spheres circulate

deterministically about the beam’s axis. A single sphere, by contrast, undergoes stochastic Brownian

vortex circulation that maps out the optical force field.
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Optical forces arising from the polarization and polariza-
tion gradients in vector beams of light constitute a new
frontier for optical micromanipulation. Linearly polarized
light has been used to orient birefringent objects in conven-
tional optical tweezers [1–3] and circular polarization has
been used to make them rotate [1,3–7]. More recently,
optically isotropic objects also have been observed to cir-
culate in circularly polarized optical traps [8–10], through a
process described as spin-to-orbit conversion [10–14].
Here, we present a general formulation of the linear and
angular momentum densities in vector beams of light that
clarifies how the amplitude, phase, and polarization profiles
contribute to the forces and torques that such beams exert on
illuminated objects. This formulation reveals that the curl of
the spin angular momentum can exert torques on illumi-
nated objects without contributing to the light’s orbital
angular momentum, and that this effect dominates spin-
to-orbit conversion in circularly polarized optical tweezers.
Predicted properties of polarization-dependent optical
forces are confirmed through observations of a previously
unreported mode of Brownian vortex circulation for an
isotropic sphere in elliptically polarized optical tweezers.

The vector potential describing a monochromatic beam
of light of angular frequency ! may be written as

A ðr; tÞ ¼ uðrÞei’ðrÞ�i!t�̂ðrÞ; (1)

where uðrÞ is the real-valued amplitude, ’ðrÞ is the real-
valued phase, and �̂ðrÞ is the complex-valued polarization
vector at position r. This description is useful for practical
applications because uðrÞ, ’ðrÞ, and �̂ðrÞ may be specified
independently, for example, using holographic techniques
[3,15–17]. Poynting’s theorem then yields the time-
averaged momentum density

g ðrÞ ¼ !

2�c2
=fA�ðr; tÞ � ½r �Aðr; tÞ�g; (2)

where � is the permeability of the medium and c is the
speed of light in the medium. The momentum density gives

rise to the radiation pressure that the light exerts on illu-
minated objects and may be expressed in terms of the
experimentally accessible parameters as

gðrÞ ¼ !

2�c2
IðrÞr’� i!

2�c2
IðrÞ��jr�j þ

1

2
r� s; (3)

where IðrÞ ¼ u2ðrÞ is the intensity and where

s ðrÞ ¼ !

2�c2
IðrÞ�ðrÞ (4)

is the spin angular momentum density in a beam of light
with local helicity

� ðrÞ ¼ i�̂ðrÞ � �̂�ðrÞ: (5)

The projection of �ðrÞ onto the propagation direction k̂ðrÞ
is related to the Stokes parameters of the beam [18] by

�ðrÞ � k̂ðrÞ ¼ S3ðrÞ=S0ðrÞ. It achieves extremal values of
þ1 and �1 for right- and left-circularly polarized light,
respectively.
The momentum density described by Eq. (3) gives rise

to the radiation pressure experienced by objects that absorb
or scatter light. Identifying gðrÞ with the radiation pressure
on a particle is most appropriate in the Rayleigh limit,
when the particle’s size is no greater than the wavelength
of light. In this limit, the three terms in gðrÞ may be
interpreted as distinct mechanisms by which a beam of
light exerts forces on illuminated objects.
The first two terms in Eq. (3) constitute the familiar

phase-gradient contribution to the radiation pressure [16].
In this context, the second term accounts for the indepen-
dent phase profiles that may be imposed on the real and
imaginary components of the polarization in an elliptically
polarized beam. Phase gradients have been used to create
three-dimensional optical force landscapes [16], such as
knotted force fields [19] and true tractor beams [20]. They
also account for the orbital angular momentum density
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‘ ðrÞ ¼ !

2�c2
IðrÞ½r� ðr’� i��jr�jÞ�; (6)

carried by helical modes of light [21,22]. In this context,
the polarization-dependent term in Eq. (6) vanishes iden-
tically in linearly polarized light, but manifests spin-to-
orbit conversion in elliptically polarized beams.

The third term in Eq. (3) describes how variations in spin
angular momentum contribute to the linear momentum
density in nonuniform beams of light. This spin-curl term
encompasses forces due to spatially-varying elliptical po-
larization and also those due to intensity variations in
elliptically polarized beams. Streamlines of r� s natu-
rally loop around extrema in the beam’s intensity. Spin-curl
forces thus tend to make illuminated objects circulate in
the plane transverse to the direction of propagation.
Observations of colloidal spheres circulating in beams of
light with spatially-varying elliptical polarization
[10,13,23] consequently have been interpreted as evidence
that the curl of the polarization contributes to the light’s
orbital angular momentum. Equation (6), however, makes
clear that the spin-curl contribution to gðrÞ does not con-
tribute in any way to ‘ðrÞ. For the same reason, observa-
tions of optically-induced circulation in uniformly
circularly polarized optical traps [8,9] need not imply
spin-to-orbit conversion.

To illustrate these points, we consider the forces exerted
on an optically isotropic colloidal sphere by elliptically
polarized optical tweezers. We model the trap as an
Gaussian beam of wave number k brought to a focus
with convergence angle � by a lens of focal length f and
numerical aperture NA ¼ nm sin� in a medium of refrac-
tive index nm. The beam’s initial polarization is

�̂ðrÞ ¼ 1ffiffiffi
2

p ðx̂þ ei�ŷÞ; (7)

with a corresponding incident helicity �0 ¼ sin� along ẑ.
The focused beam’s vector potential may be expressed in
cylindrical coordinates r ¼ ð�;�; zÞ with the Richards-
Wolf integral formulation [14,24,25],

AðrÞ ¼ �i½A0ðrÞ þ A2ðrÞ�ðcos�þ ei� sin�Þ�̂
� i½A0ðrÞ � A2ðrÞ�ðei� cos�� sin�Þ
� �̂� 2A1ðrÞðcos�þ ei� sin�Þẑ; (8)

as a Fourier-Bessel expansion

AnðrÞ ¼ kfu0
2i!

Z �

0
anð�ÞJnðk� sin�Þeizk cos�d�; (9)

with expansion coefficients [25]

a0ð�Þ ¼ ð1þ cos�Þ sin� ffiffiffiffiffiffiffiffiffiffi
cos�

p
(10)

FIG. 1 (color online). (a) Streamlines of the momentum density gðrÞ in a right-circularly polarized optical tweezer. (b) Components
of gðrÞ in the plane indicated in (a), shaded by the intensity IðrÞ. (c) Measured trajectory of one particle in a seven-sphere cluster
trapped near the focus of the beam. Discrete points show the last three seconds of motion, colored by time. (d) Circulation rate � as a
function of the beam’s Stokes parameters S3=S0. Inset: snapshot of the cluster indicating the sphere whose trajectory is plotted.
(e) Three seconds of a 3.5-minute trajectory of a single polystyrene sphere diffusing in a circularly polarized optical tweezer, shaded by
time. (f) Time-averaged probability flux jðrÞ computed from the full measured trajectory. Barbs are colored by the relative probability
density pðrÞ computed from the same trajectory. Brownian vortex circulation is apparent in the vorticity of jðrÞ. (g) Dependence of the
Brownian vortex circulation rate on S3=S0. Inset: snapshot of the trapped sphere. The color bar indicates relative intensity IðrÞ for (b),
time for (c) and (e), and relative probability pðrÞ for (f).
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a1ð�Þ ¼ sin2�
ffiffiffiffiffiffiffiffiffiffi
cos�

p
(11)

a2ð�Þ ¼ ð1� cos�Þ sin� ffiffiffiffiffiffiffiffiffiffi
cos�

p
: (12)

Streamlines of gðrÞ in a right-circularly polarized optical
tweezer (�0 ¼ þ1, NA ¼ 1:4) are shown spiraling around
the optical axis in Fig. 1(a).

A slice through the beam in the transverse plane indi-
cated in Fig. 1(a) reveals the azimuthal component to the

transverse momentum density g?ðrÞ ¼ gðrÞ � �̂ that is
plotted in Fig. (1(b)]. The transverse momentum density
may be resolved into two contributions

g?ðrÞ ¼ gOðrÞ þ gSðrÞ (13)

arising from the spin-to-orbit and spin-curl contributions to
gðrÞ, respectively:

gOðrÞ ¼ 2!

�c2
1

�
½jA1ðrÞj2 þ jA2ðrÞj2��0 (14)

and

gSðrÞ ¼ !

�c2
½@z=fA�

1ðrÞðA0ðrÞ � A2ðrÞÞg � @rðjA0ðrÞj2

� jA2ðrÞj2Þ��0: (15)

Both are proportional to the helicity of the incident beam,
�0. They do not, however, contribute equally to the trans-
verse component of the radiation pressure. At the focus of
the circularly polarized optical tweezer, for example, 79%
of the transverse momentum density is due to the spin-curl
term gSðrÞ and only 21% from spin-to-orbit conversion.
More generally, both A1ðrÞ and A2ðrÞ vanish in the paraxial
approximation; there is no spin-to-orbit conversion in
weakly focused beams. The spin-curl contribution, by
contrast, persists in the paraxial limit.

We probe the properties of spin-dependent optical forces
by measuring their influence on the motion of micrometer-
scale colloidal spheres. Our system consists of 1:0 �m
diameter polystyrene (PS) spheres (Polysciences, Lot #
586632) dispersed in water and trapped in optical tweezers
whose helicity �0 is controlled with a quarter-wave plate.
The isotropic dielectric spheres absorb very little light
directly. By scattering light, however, they experience ra-
diation pressure proportional to the local momentum den-
sity. Our optical tweezer is powered by up to 4 W of laser
light at a vacuum wavelength of 	 ¼ 532 nm (Coherent
Verdi 5W). The elliptically polarized beam is relayedwith a
dichroicmirror to the input pupil of an objective lens (Nikon
Plan Apo, 100� , NA 1.4), which focuses the light into a
trap. We account for the mirror’s influence on the polariza-
tion bymeasuring the beam’s Stokes parameters in the input
plane of the objective lens. The sample is imaged using the
same lens in conventional bright-field illumination, which
passes through the dichroic mirror to a video camera (NEC
TI-324AII). Digitally recorded video is analyzed with stan-
dard methods of digital video microscopy [26] to measure
the trajectory rj ¼ rðj
Þ of a probe particle with 10 nm

resolution at 
 ¼ 33 ms intervals.

The trajectory plotted in Fig. 1(c) was obtained for one
of seven spheres trapped against a glass surface by a right-
circularly polarized optical tweezer (�0 ¼ þ0:8) powered
by 1.5 W. The optically assembled cluster, shown inset
into Fig. 1(d), spans the region of the beam indicated in
Fig. 1(b), and thus rotates about the beam axis at a rate of
roughly � ¼ 0:4 Hz. The data in Fig. 1(d) confirm the
prediction of Eqs. (14) and (15) that the rotation rate varies
linearly with the degree of circular polarization.
The colloidal cluster circulates deterministically in the

elliptically polarized optical tweezer because it continu-
ously scatters light in regions where g?ðrÞ is substantial.
A single sphere diffusing in an elliptically polarized
optical tweezer, by contrast, explores the entire force land-
scape presented by the light. This includes regions near the
optical axis where g?ðrÞ is predicted to vanish. Figure 1(e)
shows the measured trajectory of one such sphere in a
right-circularly polarized trap (�0 ¼ þ0:8) powered by
0.05 W. Optically induced circulation is not immediately
obvious in the noisy trajectory, which is shaded to indicate
the passage of time. It becomes evident when the trajectory
rj is compiled into a time-averaged estimate [27] for the

steady-state probability current

j ðrÞ ¼ 1

N � 1

XN�1

j¼1

rjþ1 � rj



��j

�
r� rjþ1 þ rj

2

�
; (16)

which is plotted in Fig. 1(f). Here N ¼ 7000 is the number
of discrete samples, and ��ðrÞ is the kernel of an adaptive
density estimator [27] whose width � varies with the
sampling density. The symbols in Fig. 1(f) are shaded by
the estimated probability density

pðrÞ ¼ 1

N

XN
j¼1

��j
ðr� rjÞ (17)

for finding the particle near r. Together, jðrÞ and pðrÞ
confirm the prediction of Eqs. (14) and (15) that circulation
vanishes on the optical axis where the particle’s probability
density is greatest.
Taking care to measure r from the center of circulation,

the mean circulation rate may be estimated as

� ¼
Z

�ðrÞ½r� jðrÞ� � ẑd2r: (18)

Equation (18) improves upon the graphical method for
estimating � introduced in Ref. [28] by making optimal
use of discretely sampled data [27]. Because the single
particle spends most of its time in a curl-free region of the
optical force field, its circulation rate is substantially
smaller than in the deterministic case. Even so, the data
in Fig. 1(g) again are consistent with the prediction that �
scales linearly with �0.
The single particle’s stochastic motion differs qualita-

tively from the cluster’s deterministic circulation. Were it
not for random thermal forces, the isolated sphere would
remain at mechanical equilibrium on the optical axis.
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Thermal forces enable it to explore the optical force land-
scape, where it is advected by the spin-dependent contri-
bution to the radiation pressure. This system, therefore,
constitutes an example of a Brownian vortex [29,30], a
stochastic machine that uses noise to transduce work out of
a static nonconservative force field.

Unlike previous experimental demonstrations of
Brownian vortexes [28,29], the conservative restoring
force in this system is transverse to the nonconservative
contributions. Consequently, the particle’s radial excur-
sions are described by the Boltzmann distribution [30]
pðrÞ ¼ expð��UðrÞÞ where ��1 ¼ kBT is the thermal
energy scale at absolute temperature T and UðrÞ is the
particle’s potential energy in the trap. The solenoidal part
of the radiation pressure [30]

fðrÞ ¼ �!

8�c2
r�

Z r0 � Iðr0Þ½r0’� i�̂�jr0�̂j�
jr� r0j d3r0

þ �

2
r� sðrÞ; (19)

then advects pðrÞ into the probability current jðrÞ ¼
�ppðrÞfðrÞ, where � is the particle’s scattering cross sec-

tion and �p is its mobility. The first term in Eq. (19) may

be neglected in a beam such as a optical tweezer that
carries little or no orbital angular momentum. The data
in Fig. 1(f) thus map out the spin-curl force in the trans-
verse plane. Moreover, because the circulation direction is
determined unambiguously by the curl of fðrÞ, this system
is a practical realization of a so-called trivial Brownian
vortex, which has been proposed [30] but not previously
demonstrated.

Formulating the optical momentum density in terms of
experimentally accessible parameters clarifies the nature
and origin of the forces that can be applied to microscopic
objects using the radiation pressure in beams of light. This
formulation confirms previous reports of forces arising
from phase gradients [16] and demonstrates that phase-
gradient forces act independently of the state of polariza-
tion. The spin-curl mechanism unifies forces arising from
the curl of the polarization and forces due to intensity
gradients in elliptically polarized beams. Because they
induce circulatory motion, spin-curl forces are easily mis-
interpreted as evidence for spin-to-orbit conversion. The
spin-curl density, however, does not contribute to the orbi-
tal angular momentum of the light. Spin-to-orbit conver-
sion, by contrast, removes spin angular momentum from a
beam of light and transmutes it into orbital angular
momentum [11]. The present formulation clarifies this
mechanism, and reveals that spin-to-orbit conversion has
played a secondary role in previous reports of optically
induced circulation. Using Eq. (3) as a guide, all three
mechanisms now may be optimally leveraged to improve
optical micromanipulation and the performance of light-
driven machines.

We acknowledge helpful discussions with Giovanni
Milione. This work was supported by the National

Science Foundation principally through Grant No. DMR-
0855741, and in part by Grant No. DMR-0922680.

[1] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, Nature (London) 394, 348 (1998).

[2] S. K. Mohanty, K. D. Rao, and P.K. Gupta, Appl. Phys. B
80, 631 (2005).

[3] D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett,
and J. Leach, Opt. Express 16, 15897 (2008).

[4] A. T. ONeil and M. J. Padgett, Opt. Commun. 185, 139
(2000).

[5] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett,
Phys. Rev. Lett. 88, 053601 (2002).

[6] E. Santamato, B. Daino, M. Romagnoli, M. Settembre,
and Y.R. Shen, Phys. Rev. Lett. 57, 2423 (1986).

[7] A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).

[8] Y. Zhao, J. S. Edgar, G.D.M. Jeffries, D. McGloin, and
D. T. Chiu, Phys. Rev. Lett. 99, 073901 (2007).

[9] Y. Zhao, D. Shapiro, D. Mcgloin, D. T. Chiu, and S.
Marchesini, Opt. Express 17, 23316 (2009).

[10] X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T.
Wang, Phys. Rev. Lett. 105, 253602 (2010).

[11] T.A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, J. Opt. A 10, 115005 (2008).

[12] S. Yan, B. Yao, and M. Lei, Phys. Rev. Lett. 106, 189301
(2011).

[13] X. L. Wang, J. Chen, Y. N. Li, J. P. Ding, C. S. Guo, and
H. T. Wang, Phys. Rev. Lett. 106, 189302 (2011).

[14] Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89,
241104 (2006).

[15] D. G. Grier, Nature (London) 424, 810 (2003).
[16] Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and

D.G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[17] Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[18] M. Born and E. Wolf, Principles of Optics (Cambridge

University Press, Cambridge, England, 1997), 6th ed..
[19] E. R. Shanblatt and D.G. Grier, Opt. Express 19, 5833

(2011).
[20] S.-H. Lee, Y. Roichman, and D.G. Grier, Opt. Express 18,

6988 (2010).
[21] L. Allen, M.W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[22] N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt.

43, 2485 (1996).
[23] G. Cipparrone, I. Ricardez-Vargas, P. Pagliusi, and C.

Provenzano, Opt. Express 18, 6008 (2010).
[24] E. Wolf, Proc. R. Soc. A 253, 349 (1959).
[25] B. Richards and E. Wolf, Proc. R. Soc. A 253, 358 (1959).
[26] J. C. Crocker and D.G. Grier, J. Colloid Interface Sci. 179,

298 (1996).
[27] B.W. Silverman, Density Estimation for Statistics and

Data Analysis (Chapman and Hall, London, 1986), 1st ed..
[28] Y. Roichman, B. Sun, A. Stolarski, and D.G. Grier, Phys.

Rev. Lett. 101, 128301 (2008).
[29] B. Sun, J. Lin, E. Darby, A. Y. Grosberg, and D.G. Grier,

Phys. Rev. E 80, 010401 (2009).
[30] B. Sun, D. G. Grier, and A.Y. Grosberg, Phys. Rev. E 82,

021123 (2010).

PRL 108, 173602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 APRIL 2012

173602-4


