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Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum

sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic

bath, we study the effects of the infrared divergence on the probability of sticking and obtain a

nonperturbative expression for the sticking rate. We find that for weak dissipative coupling �, the low-

energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The

sticking probability for a neutral particle with incident energy E ! 0 behaves asymptotically as s�
Eð1þ�Þ=2ð1��Þ; for a charged particle, we obtain s� E�=2ð1��Þ. Thus, ‘‘quantum mirrors’’—surfaces that

become perfectly reflective to particles with incident energies asymptotically approaching zero—can also

exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous

silicon via the emission of a Rayleigh phonon.
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Since the very early years of quantum theory, theorists
have considered the interaction of low-energy atoms and
molecules with surfaces [1]. In comparison to a classical
particle, a quantum particle at low energy was predicted to
have a reduced probability to adsorb to surfaces. The
reason is despite the long-range attractive van der Waals
interaction between a neutral particle and surface, at suffi-
ciently low energies, quantum particles have little proba-
bility of coming near the surface [2].

This effect is named ‘‘quantum reflection,’’ and it is a
simple result of the wavelike nature of low-energy particles
moving in a finite-range attractive potential. This reduction
in the particle’s probability density near the surface leads
to a reduction in the transition probability of the particle to
a state bound to the surface. In one of the earliest applica-
tions of quantum perturbation theory, Lennard-Jones and
Devonshire concluded that the probability of a neutral
particle with energy E sticking to the surface should vanish

as
ffiffiffiffi
E

p
as E ! 0.

In contrast, charged particles do not experience the
effects of quantum reflection. Far from the surface, charged
particles interact with the surface through a Coulomb
potential generated by the image charge. Because of the
slow spatial variation of the Coulomb potential, incident
particles behave semiclassically. As a result, Clougherty
and Kohn [2] found that the sticking probability should
tend to a nonvanishing constant as E ! 0.

Without a mechanism for the incident particle to transfer
energy to the target, a particle cannot adsorb to the surface;
however, previous theoretical studies have concluded that
the detailed form of the dynamical particle-surface inter-
action responsible for energy transfer is inessential to the
sticking threshold law [3–5]. This seemingly universal
scaling law for neutral particles was shown to hold even
within a nonperturbative model that includes arbitrarily
strong quantum fluctuations of the surface [2,6]. The model

considered, however, was regularized with the use of a
low-frequency cutoff. Thus the effects of an infrared di-
vergence involving low-frequency excitations were not
included in the analysis.
In the 1980s, experiments went to sub–millidegrees

Kelvin temperatures to look for this threshold law scaling
in a variety of physical systems without success [7].
Theorists [8] realized that the experiments suffered from
unwanted interactions from a substrate supporting the
target of a superfluid helium film. By increasing the thick-
ness of the film, the next generation of experiments [9]

produced data consistent with the
ffiffiffiffi
E

p
law, and the con-

troversy subsided.
In recent years, with dramatic advances in producing

and manipulating ultracold atoms, there is renewed interest
in interactions between low-energy atoms and surfaces.
New technologies have been proposed that rely on the
quantum dynamics of ultracold atoms near surfaces; mi-
crofabricated devices called ‘‘atom chips’’ would store and
manipulate cold atoms near surfaces for quantum informa-
tion processing and precision metrology [10]. Our under-
standing of device performance will depend in part on our
understanding of ultracold atom-surface interactions.
Experiment is now in a position to test detailed theoretical
predictions on the behavior of low-energy sticking and
scattering from surfaces.
In this Letter, we consider a standard physisorption

model nonperturbatively and we focus on the effects of
low-frequency excitations on quantum reflection and stick-
ing. Our primary interest is in exploring theoretically how
the threshold laws might be modified by many-body ef-
fects. We follow the mean-field variational method intro-
duced by Silbey and Harris in their analysis of the quantum
dynamics of the spin-boson model [11]. Using this method
we analyze the effects of the infrared divergence on the
sticking process. Our analysis reveals two distinct scaling
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regimes in the parameter space in analogy with localized
and delocalized phases in the spin-boson model. In the
delocalized regime, an infrared divergence in the bath is
cut off by an energy scale that depends on the incident
energy of the particle E. As a consequence, we find that
both the threshold laws for neutral and charged particles
are modified by the dissipative coupling strength �. As a
result of the low-frequency fluctuations, the threshold law
for neutral particles is no longer universal, and the thresh-
old law for charged particles no longer precludes perfect
reflection at ultralow energies.

We take a standard model that is commonly used to
describe physisorption where the adatom moves in a static
potential and exchanges energy with a bath of oscillators.
In the second quantized form, it becomes

H ¼ Hp þHb þHc; (1)

where

Hp ¼ Ecyk ck � Ebb
yb; (2)

Hb ¼ X
q

!qa
y
qaq; (3)

Hc ¼ �ðcyk bþ byckÞg1
X
q

�ð!qÞðaq þ ayq Þ

� cyk ckg2
X
q

�ð!qÞðaq þ ayq Þ

� bybg3
X
q

�ð!qÞðaq þ ayq Þ (4)

cyk (ck) creates (annihilates) a particle in the entrance

channel jki with energy E; by (b) creates (annihilates) a

particle in the bound state jbi with energy �Eb. a
y
q (aq)

creates (annihilates) a boson in the target bath with energy
!q. (We use natural units throughout where @ ¼ 1.)Hc is a

general dynamical particle-surface interaction where g1,
g2, and g3 are model coupling constants, obtainable from
the specific particle-excitation mechanism. The form of
�ð!qÞ also depends on the specific particle-excitation

coupling. These quantities are made explicit in the
Supplemental Material [12] using the coupling to
Rayleigh phonons as an example.

The g2 term gives the strength of the coupling of the
particle in the continuum to the bath, while g3 gives the
strength of the coupling of the bound particle to the bath.
g1 gives the strength of bath-assisted particle transitions
between the continuum state and the bound state. The
coupling constants g2 and g3 are analogous to those found
in polaron models, and these terms give rise to self-energy
corrections from the coupling to surface excitations.

There is ample evidence that such interactions are
present in physisorption systems. A hydrogen atom bound
to the surface of a liquid helium film has been seen experi-
mentally to locally deform the surface [13], increasing the

adatom binding energy and creating a type of surface
polaron.
We work in the regime where E � Eb. We neglect the

probability of ‘‘prompt’’ inelastic scattering, where bosons
are created and the particle escapes to infinity with de-
graded energy, as the phase space available for these
processes vanishes as E ! 0. Thus only the incoming
and bound channels are retained for the particle.
We consider a model with Ohmic dissipative spectral

density. Physically this can be realized with a dynamical
particle-surface interaction resulting from surface dis-
placements of an elastically isotropic target. (Brivio [14]
showed this in a semiclassical model for the case of inter-
actions with bulk phonons. We have found that an Ohmic
spectral density also results for interactions with either
Rayleigh phonons or ‘‘mixed mode’’ phonons [15]. We
note that the particle-ripplon interaction [16], appropriate
for the case of hydrogen sticking to superfluid helium
films, gives a super-Ohmic spectral density. Hence, theffiffiffiffi
E

p
law would remain unchanged in this case by the non-

perturbative effects considered here.) The spectral density
function that characterizes the coupling to the excitation
bath is given by

Jð!Þ � X
q

g23�
2ð!qÞ�ð!�!qÞ ¼ �!; (5)

where �, the dissipative coupling strength, is a frequency-
independent constant.
This model differs in an important way from the model

of Ref. [2] where low-frequency modes were cut off to
prevent an infrared divergence in the rms displacement of
the surface atom in a 1D chain. In this model, low-
frequency modes are included, and their effects on quan-
tum reflection and sticking are the focus of this study.
We start with the variational approach used by Silbey

and Harris [11] for the Ohmic spin-boson model. A gen-
eralized unitary transformation U ¼ eS is first performed
on the Hamiltonian H, with

S ¼ bybx (6)

and

x ¼ X
q

fq
!q

ðaq � ayq Þ: (7)

The variational parameters to be determined are denoted by
fq. The unitary transformation displaces the oscillators to

new equilibrium positions in the presence of the particle
bound to the surface and leaves the oscillators unshifted
when the particle is in the continuum state.
The transformed Hamiltonian ~H is given by

~H ¼ eSHe�S (8)

¼ ~Hp þ ~Hb þ ~Hc (9)
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where

~H p ¼ Ecyk ck � ~Ebb
yb; (10)

~Hc ¼�cyk b
X
q

g1qðaqþayq Þe�x�byckex
X
q

g1qðaqþayq Þ

�cyk ck
X
q

g2qðaqþayq Þ�byb
X
q

ðg3q�fqÞðaqþayq Þ;

(11)

~H b ¼ Hb; (12)

~E b ¼ Eb þ
X
q

2fqg3q � f2q
!q

; (13)

and where giq � gi�ð!qÞ. We define a mean transitional

matrix element �

� �
�
ex
X
q

g1qðaq þ ayq Þ
�
; (14)

where h� � �i denotes the expectation over the bath modes.
The Hamiltonian is then separated into the following

form:

~H ¼ H0 þ V; (15)

where V is chosen such that hVi ¼ 0. Hence, we obtain

H0 ¼ Ecyk ck � ~Ebb
yb���cyk b��byck þ

X
q

!qa
y
qaq;

(16)

V ¼ �cyk b
�X

q

g1qðaq þ ayq Þe�x ���
�

� byck
�
ex
X
q

g1qðaq þ ayq Þ � �

�

� cyk ck
X
q

g2qðaq þ ayq Þ

� byb
X
q

ðg3q � fqÞðaq þ ayq Þ: (17)

We calculate the ground state energy of H0 in terms of
the variational parameters ffqg and minimize to obtain the

following condition:

fq

�
1þ �þ 2�2!�1

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2

p
�
¼ g3q

�
1þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4�2
p

�

þ 2�
ffiffiffi
u

p
g1qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4�2
p ; (18)

which is an implicit equation for fq. For convenience, in

the above we have defined

� ¼ Eþ ~Eb ¼ Eþ Eb þ
X
q

2fqg3q � f2q
!q

(19)

and

� ¼ ffiffiffi
u

p
�1; (20)

u � e
�P

q

f2q=!
2
q

; (21)

�1 �
X
q

g1qfq
!q

: (22)

Under the condition � � �, Eq. (18) can be simplified to

fq ¼
g3q

1þ z
!q

; (23)

where

z � �2

�
: (24)

We find the following, valid for z � !c,

u � ðez=!cÞ�; (25)

�1 � g1�!c=g3; (26)

� � Eþ Eb þ �!c: (27)

The closed-form expression for z is thus obtained

z � K

�
eK

!c

�
�=1��

; (28)

where

K � ðg1g3�!cÞ2
Eþ Eb þ g23�!c

(29)

and � ¼ �=g23.
Depending on the value of �, there are two solutions to

the variational parameters fq. We see from Eq. (28) that as

� ! 1, z ! 0. Thus,

fq �
(g3q; � � 1;

g3q
1þ z

!q

; � < 1:
(30)

In the regime where �< 1, we see that the parameter fq
for excitations whose frequency !q � z vanishes as

!q ! 0. It is this weakening of the coupling to nonadia-

batic excitations that allows us to extract a finite mean
transitional matrix element. In the process, the sticking rate
is altered from the perturbative result.
We can now show that the condition � � � is satisfied

so that our variational solution is self-consistent.

According to Eq. (24), �=� ¼ ffiffiffiffiffiffiffiffi
z=�

p
. For � � 1, z ¼ 0,

so � ¼ 0 and � � � holds true. For �< 1, z� g2=1��
1 .
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The coupling constant g1 has a dependence on the initial
energy of the particle E. This can be seen from the tran-
sition matrix element

g1q ¼ �hb; 1qjHcjk; 0i: (31)

The amplitude of the initial state in the vicinity of the
surface is suppressed by quantum reflection. It is a simple
consequence of wave mechanics [2] that in the low-energy

regime, g1q �
ffiffiffiffi
E

p
as E ! 0 for a neutral particle. For a

charged particle, the coupling constant behaves as g1q �
E1=4 as E ! 0, as it is not subject to the effects of quantum
reflection. Thus in either case, the mean-field amplitude �
becomes arbitrarily small as E tends to zero, while �
approaches a nonzero value. Consequently, the conditions
for our variational solution are always satisfied for suffi-
ciently cold particles.

For � � �, the rate of incoming atoms sticking to the
surface can be calculated using Fermi’s golden rule [17]:

R ¼ 2�
X
q

jhb; 1qj ~Hcjk; 0ij2�ð� ~Eb � Eþ!qÞ; (32)

where j1qi denotes a state of one excitation with wave

vector q.
After calculating the relevant matrix elements, we find

the leading order of the rate R in the incident energy E to be

R ¼ 2�

�
z

!c

�
�
e�g21�Eb

�
Eb

Eb þ �!c

�
; (33)

where z given in Eq. (28) is a constant with a power
dependence on g1.

We compare this rate to that obtained by Fermi’s golden
rule on the untransformed Hamiltonian

R ¼ 2�
X
q

jhb; 1qjHcjk; 0ij2�ð�Eb � Eþ!qÞ

¼ 2�g21�Eb: (34)

The matrix elements of transformed Hamiltonian ~Hc are
reduced by a Franck-Condon factor which gives the non-
perturbative rate with an additional dependence on z.

The coupling constant g1 can be expressed in terms of a
matrix element of the unperturbed states using Eq. (31).
We take Hc to have the general form in coordinate
space [18]

Hc ¼ �X
q;�

@V0ðxÞ
@x

uq;�;x; (35)

where the normal surface displacement uq;�;x ¼
Uq;�;xðaq þ ayq Þ with branch index � and phonon wave

vector q, while V0ðxÞ is the static surface potential.

The coupling constant g1 is given by

g1 ¼
�
k

��������@V0ðxÞ
@x

��������b

�
¼

Z 1

0
��

kðxÞ
@V0ðxÞ
@x

�bðxÞdx:
(36)

(We have assumed the case of normal incidence; however,
results for the more general case follow from decomposing
the wave vector into normal and transverse components
[16].)
The continuum wave functions have the asymptotic

form for a neutral particle

�kðxÞ �
k!0

kh1ðxÞ (37)

and for a charged particle [2]

�kðxÞ �
k!0 ffiffiffi

k
p

h2ðxÞ; (38)

where k ¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
and hiðxÞ are functions, independent

of E.
The probability of sticking to the surface s is the sticking

rate per surface area per unit incoming particle flux. Hence,

sðEÞ ¼
ffiffiffiffiffiffiffiffiffi
2�2m
E

q
R. From Eq. (33) we conclude that with

�< 1 for a neutral particle,

sðEÞ � C1E
ð1þ�Þ=2ð1��Þ; E ! 0 (39)

and for a charged particle,

sðEÞ � C2E
�=2ð1��Þ; E ! 0 (40)

where Ci are energy-independent constants. It is apparent
from the nonanalyticity in � (signaling a quantum critical
point at � ¼ 1) that the probability obtained goes beyond
any finite-order perturbation theory in g3.
We now provide a numerical calculation of the low-

energy sticking probability of electrons to porous silicon
via the emission of a Rayleigh phonon to illustrate our new
threshold law. Porous silicon has a low static dielectric
constant that varies with porosity and a low shear modulus,
conditions that we predict will lead to measurable experi-
mental effects in the one-phonon regime.
A comparative plot of the sticking probability is given in

Fig. 1. The rate of sticking was calculated using Eq. (33).
Using a cut-off image potential, we find a binding energy
on highly porous silicon of Eb ¼ 7:8 meV, a dissipative

coupling � ¼ 0:008, and g3 ¼ 1:3 meV �A�1. Further
computational details are given in the Supplemental
Material [12].
The sticking probability is reduced and the slope of the

energy-dependent sticking probability has increased in
comparison to the threshold law based on perturbation
theory. We can quantify the size of the predicted effect
on sticking: the relative error of omitting the effect of the
infrared singularity is 13.6% over the incident energies
considered in Fig. 1. The relative error will grow further
at lower incident energies. The relative error made in the
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exponent of the scaling law by omitting the effect of the
infrared singularity is 100%.

In summary, we have considered the effects of the
infrared singularity resulting from interaction with an
Ohmic bath on surface sticking. We calculated using a
variational mean-field method the sticking rate as a func-
tion of the incident energy in the low-energy asymptotic
regime. We have shown that for an Ohmic excitation bath
the threshold rate for neutral particles decreases more
rapidly with decreasing energy E, in comparison with the
perturbative rate. We predict new threshold laws for sur-
face sticking, where the energy dependence varies with the
dissipative coupling �.

The new threshold laws are beyond simple perturbation
theory where only first-order transitions are considered or
the Fock space of the excitations is truncated. The new
threshold laws are a result of a bosonic orthogonality
catastrophe [19]; the ground states of the bath with differ-
ent particle states are orthogonal. The sticking transition
amplitude acquires a Franck-Condon factor whose infrared
singularity is cut off by z. As with the x-ray absorption
edge [19], a new power law results at threshold. The low-
frequency fluctuations alter the power law to a bath-
dependent, nonuniversal exponent.

For the case of charged particles, we find that dissipative
coupling causes the sticking probability to vanish as
E ! 0, in contrast to the perturbative result [2]. Thus,
‘‘quantum mirrors’’—surfaces that become perfectly re-
flective to particles with incident energies asymptotically
approaching zero—can also exist for charged particles.
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FIG. 1 (color online). The sticking probability of an electron of
energy E to the surface of porous silicon by the emission of a
Rayleigh phonon. The perturbative result using Fermi’s golden
rule is given by (red) circles, while the variational mean-field
result is given by (blue) stars. The variational mean-field method
gives a new threshold law for quantum sticking. We take a
porosity P ¼ 92:9%, giving a dielectric constant 	 ¼ 1:2. The
shear modulus of G ¼ 230 MPa and Poisson’s ratio � ¼ 0:03
are calculated using Ref. [20].
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