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We calculate the axial couplings of mesons and baryons containing a heavy quark in the static limit

using lattice QCD. These couplings determine the leading interactions in heavy hadron chiral perturbation

theory and are central quantities in heavy quark physics, as they control strong decay widths and the light

quark mass dependence of heavy hadron observables. Our analysis makes use of lattice data at six

different pion masses, 227 MeV<m� < 352 MeV, two lattice spacings, a ¼ 0:085, 0.112 fm, and a

volume of ð2:7 fmÞ3. Our results for the axial couplings are g1 ¼ 0:449ð51Þ, g2 ¼ 0:84ð20Þ, and g3 ¼
0:71ð13Þ, where g1 governs the interaction between heavy-light mesons and pions and g2;3 are similar

couplings between heavy-light baryons and pions. Using our lattice result for g3, and constraining 1=mQ

corrections in the strong decay widths with experimental data for �ð�Þ
c decays, we obtain �½�ð�Þ

b !
�b�

�� ¼ 4:2ð1:0Þ, 4.8(1.1), 7.3(1.6), 7:8ð1:8Þ MeV for the �þ
b , �

�
b , �

�þ
b , ���

b initial states, respectively.

We also derive upper bounds on the widths of the �0ð�Þ
b baryons.
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Introduction.—Significant progress has been made in the
last few years in uncovering the spectrum and decays of
hadrons containing heavy quarks at the dedicated B facto-
ries, the Tevatron, and the LHC. Accurate lattice QCD
calculations are required to confront data from these ex-
periments with the standard model. These lattice calcula-
tions involve extrapolations in the masses of the light
quarks, which require theoretical guidance. For hadrons
containing a single heavy quark, the relevant effective
theory is known as heavy-hadron chiral perturbation theory
(HH�PT) [1–4], which is built upon two of the most
important symmetries of QCD: chiral symmetry and
heavy-quark symmetry. At leading order, the HH�PT
Lagrangian contains three axial couplings g1, g2, and g3.
The coupling g1 determines the strength of the interaction
between heavy-light mesons and pions, while g2 and g3
similarly determine the interaction of heavy-light baryons
with pions. Consequently, these couplings are central to the
low-energy dynamics of heavy-light hadrons, and can be
used to calculate the widths of strong decays such as

�ð�Þ
b ! �b�. The axial couplings are calculable from the

underlying theory of QCD, using a lattice regularization.
The mesonic coupling g1 has been previously studied in
lattice QCD with Nf ¼ 0 or Nf ¼ 2 dynamical quark

flavors [5–9]. In the following, we present the first com-
plete calculation of g1, g2, and g3 in Nf ¼ 2þ 1 lattice

QCD, controlling all systematic uncertainties. We use our

results to calculate �½�ð�Þ
b ! �b�

�� and give bounds on

�½�0ð�Þ
b ! �b��. Technical details of the analysis that are

omitted here for brevity will be presented in a forthcoming
paper.

Lattice QCD calculation.—The heavy hadrons consid-
ered in the lattice calculation are the lowest-lying heavy-
light mesons and baryons containing light valence quarks
of the flavors u or d. We work in the heavy-quark limit
mQ ¼ 1 where the axial couplings are defined, and as-

sume isospin symmetry. The heavy-light mesons occur in
degenerate pseudoscalar and vector multiplets, described
by interpolating fields Pi � �Q�5q

i and P�i
� � �Q��q

i,

where qi is a light quark of flavor i and �Q is a static heavy
antiquark. In the heavy-light baryon sector, we include
both the states with sl ¼ 0 and sl ¼ 1, where sl is the
(conserved) spin of the light degrees of freedom. The states

with sl ¼ 1 are described by an interpolating field Sij�� �
�abcðC��Þ��qia�qjb�Qc� that couples to the isotriplet states

with both J ¼ 1=2 (�Q) and J ¼ 3=2 (��
Q), which are

degenerate in the heavy-quark limit. The isosinglet sl ¼
0 baryon �Q has J ¼ 1=2 and is described by an inter-

polating field Tij
� � �abcðC�5Þ��qia�qjb�Qc�. The axial

couplings can be extracted by calculating matrix elements
of the axial current A� � �d���5u:

hP�
djA�jPui ¼ �2ðg1Þeff"��;

hSddjA�jSdui ¼ �ði= ffiffiffi
2

p Þðg2Þeffv����	

�U	U
;

hSddjA�jTdui ¼ �ðg3Þeff �U�U:

(1)

Here, v is the four-velocity, "� is the polarization vector of
the P� meson, U is the Dirac spinor of the T baryon, and
theU�’s are the ‘‘superfield spinors’’ of the S baryons [10].
At leading order in the chiral expansion, the ‘‘effective
axial couplings’’ ðgiÞeff defined via (1) are equal to the axial
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couplings gi that appear in the HH�PT Lagrangian. The
next-to-leading-order expressions for ðgiÞeff are given in
Ref. [10]. To calculate the matrix elements (1) in lattice
QCD, we set v ¼ 0 and construct Euclidean two- and

three-point correlators CHðtÞ ¼ h�Hðx; tÞ�y
Hðx; 0Þi and

CH!H0 ðt; t0Þ ¼ P
x0 h�H0 ðx; tÞA�ðx0; t0Þ�y

Hðx; 0Þi, where

t > t0 > 0 and �H are the interpolating fields of the heavy
hadrons as defined above. We form the ratios

R1ðt; t0Þ ¼ �
1
3C

��
Pu!P�

d
ðt; t0Þ

CPu
ðtÞ ; (2)

R2ðt; t0Þ ¼ 2
i
6 �0�	
C

�	

Sdu!Sdd

ðt; t0Þ
1
3C

��
Sdd

ðtÞ ; (3)

and the double ratio (needed because of the nonzero S-T
mass splitting)

R3ðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3C

��
Tdu!Sdd

ðt; t0Þ 13C		
Sdd!Tdu

ðt; t0Þ
1
3C

��
Sdd

ðtÞCTdu
ðtÞ

vuut : (4)

Here,�, 	, 
 are the Lorentz indices from the axial current
or the interpolating fields for P� and S and are summed
over when repeated. Using (1) and the spectral decompo-
sition of the correlators, one finds that

Riðt; t=2Þ ¼ ðgiÞeff þOðe��itÞ; (5)

where the �i are related to the energy gaps of the lowest
contributing excited states.

The calculations presented in this work make use of
lattice gauge field configurations generated by the RBC/
UKQCD collaboration [11] with 2þ 1 flavors of light
quarks, implemented with a domain-wall action that real-
izes lattice chiral symmetry. The details of the ensembles
included in our analysis can be found in Table I. We
computed domain-wall light-quark propagators for a

range of unitary (amðvalÞ
u;d ¼ amðseaÞ

u;d ) and partially quenched

(amðvalÞ
u;d < amðseaÞ

u;d ) quark masses. As shown in the lower

part of the table, we have data with (valence) pion masses
ranging from 227 to 352 MeV, two lattice spacings, a ¼
0:085, 0.112 fm, and a large lattice volume of ð2:7 fmÞ3. The
sea-strange-quarkmasses are about 10% above the physical
value, and we assign a 1.5% systematic uncertainty to our
final results to account for this, based on the size of the
effect on similar observables as studied in Ref. [11]. For the
light-quark propagators, we used gauge-invariant Gaussian
smeared sources to improve the overlap of the hadron
interpolating fields with the ground states. We constructed
the three-point functions CH!H0 ðt; t0Þ using light-quark
propagators with smeared sources at (x, 0) and (x, t) and
a local sink at the current insertion point (x0, t0), for various
separations t as shown in Table I. The bare lattice axial
current requires a finite renormalization ZA to match the
continuum current, A� ¼ ZA �u���5d. We used nonpertur-

bative results for ZA obtained by the RBC/UKQCD col-
laboration [11].
The action for the static heavy quark is a modified form

of the Eichten-Hill action [12] in which the standard gauge
links are replaced by HYP (hypercubic) smeared [13]
gauge links, resulting in improved statistical signals for
the correlators [14]. To study heavy-quark discretization
effects and optimize the signals, we generated data for
nHYP ¼ 1, 2, 3, 5, 10 levels of HYP smearing, correspond-
ing to different lattice actions for the heavy quarks. These
actions have the same continuum limit, but may scale
differently. Our final analysis focuses on nHYP ¼ 1, 2, 3.
In Fig. 1, we show examples of numerical results for the

ratios (2)–(4). We observed plateaus in Riðt; t0Þ as a func-
tion of t0, and we averaged the ratios in this region, which is
essentially equivalent to taking Riðt; t=2Þ. We denote these
averages as RiðtÞ. To obtain the ground-state contributions
according to (5), one needs to calculate limt!1RiðtÞ. To
this end, we performed fits of the data using the functional
form RiðtÞ ¼ ðgiÞeff � Aie

��it with parameters ðgiÞeff , Ai,

TABLE I. Details of gauge field ensembles (upper section, see
also Ref. [11]) and ‘‘measurements’’ (lower section). The super-
scripts v, s on m� indicate the masses of the quarks in the pions,

equal to amðvalÞ
u;d or amðseaÞ

u;d .

Ensemble a (fm) L3 � T amðseaÞ
u;d mðssÞ

� (MeV)

A 0.1119(17) 243 � 64 0.005 336(5)

B 0.0849(12) 323 � 64 0.004 295(4)

C 0.0848(17) 323 � 64 0.006 352(7)

Ensemble amðvalÞ
u;d mðvsÞ

� (MeV) mðvvÞ
� (MeV) t=a

A 0.001 294(5) 245(4) 4; 5; . . . ; 10
A 0.002 304(5) 270(4) 4; 5; . . . ; 10
A 0.005 336(5) 336(5) 4; 5; . . . ; 10
B 0.002 263(4) 227(3) 6, 9, 12

B 0.004 295(4) 295(4) 6, 9, 12

C 0.006 352(7) 352(7) 13

FIG. 1 (color online). Ratios Riðt; t0Þ as a function of the
current insertion time slice t0, for t=a ¼ 10, at a ¼ 0:112 fm,

amðvalÞ
u;d ¼ 0:002, nHYP ¼ 3.
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and �i, depending on the lattice spacing a, the quark

masses amðvalÞ
u;d , amðseaÞ

u;d , and the smearing parameter nHYP.

This functional form only includes the leading contribu-
tions from excited states, but was able to fit the data well, as
shown in Fig. 2. We used the results and uncertainties for
the gap parameters �i from the fits at the coarse lattice
spacing to constrain the fits at the fine lattice spacing,
where we have fewer values of t=a. As explained in
Ref. [15], we then additionally constrained the parameters
Ai (independently for the two different lattice spacings),
using information from initial fits of data from ensembles
A and B. This allowed us to perform fits using the same
form of the function RiðtÞ even for the data from ensemble
C, where we have only one value of t=a. To estimate the
systematic uncertainties caused by higher excited states,
we calculated the shifts in ðgiÞeff at the coarse lattice
spacing when removing one or two data points with the
smallest t=að¼ 4; 5Þ or adding a second exponential to the
fits [15]. Repeated fits of RiðtÞ for a bootstrap ensemble
allowed the calculation of the covariance matrices describ-
ing the correlations of the results for ðgiÞeff from common
ensembles of gauge field configurations.

Having obtained the results for ðgiÞeff , we then per-

formed fully correlated fits of the a-, mðvvÞ
� -, and

mðvsÞ
� -dependence. For ðg1Þeff , we used the function

ðg1Þeff ¼ g1½1þ f1ðg1; mðvvÞ
� ;mðvsÞ

� ; LÞ þ d1;nHYPa
2

þ cðvvÞ1 ½mðvvÞ
� �2 þ cðvsÞ1 ½mðvsÞ

� �2�; (6)

where g1, c
ðvvÞ
1 , cðvsÞ1 , fd1;nHYPg are the free parameters. For

ðg2Þeff and ðg3Þeff , we performed coupled fits using

ðgiÞeff ¼ gi½1þ fiðg2; g3; mðvvÞ
� ;mðvsÞ

� ;�; LÞ þ di;nHYPa
2

þ cðvvÞi ½mðvvÞ
� �2 þ cðvsÞi ½mðvsÞ

� �2� (7)

(for i ¼ 2, 3), where the free fit parameters are g2, g3, c
ðvvÞ
2 ,

cðvvÞ3 , cðvsÞ2 , cðvsÞ3 , fd2;nHYP ; d3;nHYPg. The functions fi in

(6) and (7) are the nonanalytic loop contributions in par-
tially quenched SUð4j2Þ HH�PT and can be found in
Ref. [10]. They also include the leading effects of the finite
lattice size L (because of our large volume, the finite-
volume corrections were smaller than 3% for all data
points). The functions fi depend on the renormalization
scale �, but this dependence is canceled exactly by the

�-dependence of the counterterms cðvvÞi and cðvsÞi . The pa-
rameters di;nHYP for each nHYP describe the leading effects

of the nonzero lattice spacing, which are multiplicative
corrections proportional to a2 as a consequence of the
lattice chiral symmetry of the domain-wall action. In (7),
the quantity � is the S-T mass splitting, which we set to
� ¼ 200 MeV in our fits, consistent with experiments
[16,17] and our lattice data (note that � does not vanish
in the chiral or heavy-quark limits).
To determine for which values of nHYP the order-a2

corrections in (6) and (7) adequately describe the lattice
artefacts in the data, we started from fits that included all
values of nHYP, and then successively removed the data
with the largest values of nHYP. After excluding nHYP ¼ 10
and nHYP ¼ 5, we obtained good quality-of-fit values
[Q ¼ 0:70 for ðg1Þeff and Q ¼ 0:92 for ðg2;3Þeff], and the

results were stable under further exclusions. Our final
results for the axial couplings, taken from the fits with
nHYP ¼ 1, 2, 3, are

g1 ¼ 0:449� 0:047stat � 0:019syst;

g2 ¼ 0:84� 0:20stat � 0:04syst;

g3 ¼ 0:71� 0:12stat � 0:04syst:

(8)

Independent fits for each nHYP (1, 2, 3, 5, 10) gave results
consistent with (8). The estimates of the systematic un-
certainties in (8) include the following [15]: effects of next-
to-next-to-leading-order terms in the fits to the a- and
m�-dependence (3.6%, 2.8%, 3.7% for g1, g2, g3, respec-
tively), effects from the unphysically large sea-strange-
quark mass (1.5%), and effects from higher excited states
in the t ! 1 extrapolations of RiðtÞ (1.7%, 2.8%, 4.9%).
The resulting mass- and lattice-spacing dependence of the
effective couplings from the fits with (6) and (7) is shown
in Fig. 3. Note that the functions ðg2Þeff and ðg3Þeff develop
small imaginary parts for pion masses below the S ! T�
threshold atm� ¼ � [10] (the lattice data are all above this
threshold), and the real parts are shown in the figure. The
fitted coefficients di;nHYP are consistent with zero within

statistical uncertainties, and the analytic counterterms cðvvÞi

and cðvsÞi are natural sized (when evaluated at � ¼ 4�f�
with f� ¼ 132 MeV), indicating that the chiral expansions
of ðgiÞeff are under control for the range of masses used
here.
Calculation of strong decay widths.—At leading order

in the chiral expansion, the widths for the strong decays
S ! T� are

FIG. 2 (color online). Fits of the t-dependence of RiðtÞ, for
a ¼ 0:112 fm, amðvalÞ

u;d ¼ 0:002, nHYP ¼ 3.
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�½S ! T�� ¼ c2f
1

6�f2�

�
g3 þ �J

mQ

�
2 MT

MS

jp�j3; (9)

where S and T now denote physical sl ¼ 1 and sl ¼ 0
heavy baryon states such as �b and �b, jp�j is the magni-
tude of the pion momentum in the S rest frame, and cf is

a flavor factor, equal to 1 for �ð�Þ
Q ! �Q�

�, 1=
ffiffiffi
2

p
for

�0ð�Þ
Q ! �Q�

�, and 1=2 for �0ð�Þ
Q ! �Q�

0. Here we

modified the mQ ¼ 1 expression for � [18] by including

the term �J=mQ. Terms suppressed by ðm�=��Þ2 and

ð�QCD=mQÞ2, which are omitted from (9), lead to small

systematic uncertainties in �. To determine �1=2 and �3=2,

we performed fits of experimental data [19] for the widths
of the �þþ

c , �0
c (J ¼ 1=2) and the ��þþ

c , ��0
c (J ¼ 3=2)

using (9), where we constrained g3 to our lattice QCD
result (8) and set mQ ¼ 1

2MJ=c . These fits gave �1=2 ¼
0:55ð21Þ GeV and �3=2 ¼ 0:47ð21Þ GeV. We then eval-

uated (9) for mQ ¼ 1
2M� to obtain predictions for the

decays of bottom baryons. Our calculated widths �½�ð�Þ
b !

�b�
�� as functions of the �ð�Þ

b ��b mass difference are

shown as the curves in Fig. 4. Using the experimental
values of the baryon masses [17,19], our results for

�½�ð�Þ
b ! �b�

�� in MeV are 4.2(1.0), 4.8(1.1), 7.3(1.6),

7.8(1.8) for the �þ
b , ��

b , ��þ
b , ���

b initial states,

respectively, in agreement with the widths measured by

the CDF collaboration [17]. The decays �0ð�Þ�
b ! ��

b �
0,

�0
b�

�, and �0ð�Þ0
b ! ��

b �
þ, �0

b�
0 may also be allowed,

depending on the mass differences. With a spin-averaged

�0ð�Þ
b ��b splitting of 153(21) MeV (based on lattice data

from Ref. [20]), and assuming Mð��
bÞ �Mð�0

bÞ �
Mð��

bÞ �Mð�bÞ ¼ 21ð2Þ MeV [16], we obtain upper

bounds of 1.1 and 2.8 MeV (C:L: ¼ 90%) for the total
widths of the �0

b and ��
b, respectively.

Conclusions.—We have presented a lattice QCD calcu-
lation of the axial couplings of hadrons containing a heavy
quark in the static limit, including for the first time the
baryonic couplings. We have used these results to predict
the strong decay widths of bottom baryons. Our calculation
of the axial couplings controls all systematic uncertainties
by using two different lattice spacings, low pion masses, a
large volume, and the correct next-to-leading-order expres-
sions from HH�PT. Since the axial couplings are essential
for chiral extrapolations of lattice data, their accurate
determination is of broad significance in flavor physics
phenomenology.
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