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We present a light-front determination of the pionic contribution to the nucleon self-energy, ��, to

second order in pion-baryon coupling constants that allows the pion-nucleon vertex function to be treated

in a model-independent manner constrained by experiment. The pion mass � dependence of �� is

consistent with chiral perturbation theory results for small values of � and is also linearly dependent on �

for larger values, in accord with the results of lattice QCD calculations. The derivative of �� with respect

to �2 yields the dominant contribution to the pion content, which is consistent with the �d- �u difference

observed experimentally in the violation of the Gottfried sum rule.
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Understanding the pion and its interaction with and
among nucleons is a necessary step in learning how QCD
describes the interaction and existence of atomic nuclei. As
a nearly massless excitation of the QCD vacuum with
pseudoscalar quantum numbers, the pion plays a central
role in particle and nuclear physics as a harbinger of
spontaneous symmetry breaking. The pion is associated
with large distance structure of the nucleon [1,2] and the
longest-ranged component of the nucleon-nucleon force
[3]. In lattice QCD calculations, the nucleon mass depends
on an input value of the quark mass, which generates a pion
mass �, and extrapolation formulas depending on � are
typically used [4–7] (see the review [8]). In addition, the
pion cloud plays an important role in deep inelastic scat-
tering on the nucleon, especially in understanding the
violation of the Gottfried sum rule [9,10]

Phenomenological calculations of pion-nucleon interac-
tions are beset with uncertainties related to the dependence
of the vertex function on momentum transfer and on the
possible dependence upon the virtuality (difference be-
tween the square of the four-momentum and mass squared)
of any intermediate nucleon or baryon. Moreover, modern
treatments of spin 3=2 baryons such as the � (baryon
excitation of lowest mass) within the Rarita-Schwinger
[11] formalism have been problematic as discussed in
Ref. [12]. The pathologies of the �N� coupling have
long been known [13–17]. The aim of the present Letter
is to develop and apply a method that is free of those
ambiguities.

As a specific example, consider the role of the pion
cloud in deep inelastic scattering. This is related to the
pion contribution to the nucleon self-energy of Fig. 1(a).
One needs to include the term in which the virtual photon
interacts with the pion [18] [Fig. 1(b)], but one also needs
to include the effects of the virtual photon hitting the
nucleon [Fig. 1(c)]. Conservation of momentum and
charge would seem to require that the argument of the
vertex function depends on the square of the invariant

mass of the intermediate pion-baryon system (s) [19].
Taking the form factor to have the standard form of
depending on the square of the four-momentum transfer,
between the initial nucleon and intermediate baryon (t),
while natural, popular, and effective [2,20], seemingly
disagrees with charge and momentum conservation ac-
cording to Ref. [19].
But chiral symmetry (limit of vanishing pion mass)

provides strong guidance. It is known that the �N vertex
function G�NðtÞ and the nucleon axial form factor are re-
lated by the generalized Goldberger-Treiman relation [21]:

MGAðtÞ ¼ f�G�NðtÞ; (1)

where t is the square of the four-momentum transferred to
the nucleons,GAðtÞ is the axial vector form factor, and f� is
the pion decay constant. The resulting Eq. (1), obtained from
a matrix element of the axial vector current between two on-
mass-shell nucleons, follows from the partially conserved
axial current hypothesis and the pion pole dominance of the
pseudoscalar current. Using Eq. (1) has obvious practical
value, because it relates an essentially unmeasurable quan-
tity G�N with one GA that is constrained by experiments.
However, the t dependence inherent in Eq. (1) would seem to
violate the purported consequence of momentum conserva-
tion. Similarly, the pionic coupling between nucleons and�

FIG. 1 (color online). (a) Pionic (dashed line) contribution to
the nucleon (solid line) self-energy. (b) External interaction x
with the pion. (c) External interaction x with the intermediate
nucleon. (d) Effect of 2�-nucleon interaction.
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particles has an off-diagonal Goldberger-Treiman relation
[22–24], obtained by using similar logic:

2MCA
5 ðtÞ ¼ f�G�N�ðtÞ; (2)

where CA
5 is the Adler form factor [25,26], accessible in

neutrino-nucleon interactions.
The present Letter develops a method that satisfies

momentum conservation, utilizes Eq. (1), and involves
only on-mass-shell nucleons. The key to removing ambi-
guities lies in evaluating the relevant Feynman diagrams by
carrying out the integration over the four-momentum k by
first integrating over k� (the light-front energy) in such a
way that the intermediate baryon is projected onto its mass
shell. This allows the use of the on-mass-shell form factors
Eqs. (1) and (2) and is manifestly consistent with charge
and momentum conservation.

Consider the contribution to the nucleon self-energy
��ðNÞ, involving an intermediate nucleon [Fig. 1(a)],
given by Feynman rules as

��ðNÞ¼�i3g2�N �uðPÞ
Z d4k

ð2�Þ4

� �5ð6p�6kþMÞ�5

ðk2��2þ i�Þ½ðp�kÞ2�M2þ i��uðPÞF
2ðk2Þ;
(3)

where M and � are the nucleon and pion masses, res-
pectively. The quantity P represents the nucleon momen-
tum and spin, (p, s), evaluated in the proton rest frame.
We use the notation G�NðtÞ � g�NFðtÞ ¼ M

f�
GAðtÞ,

with GAð0Þ ¼ 1:267� 0:04, M ¼ 0:939 GeV, f� ¼
92:6 MeV, and g�N � G�Nð0Þ ¼ 13:2 with Fð0Þ ¼ 1.
The term Fðk2Þ represents the pion-nucleon form factor.
Its dependence on a single variable is justified only if
the pionic vertex function appears between two on-mass-
shell nucleons. In that case, one may use a dispersion
relation:

Fðk2Þ ¼ 1

�

Z 1

ð3m�Þ2
dt0 Im½Fðt0Þ�=ðk2 � t0Þ: (4)

Performing the spin average of Eq. (3) leads to the result

��ðNÞ¼3g2�N
M

Z d4kF2ðk2Þ
ið2�Þ4

� k �p
ðk2��2þ i�Þ½ðp�kÞ2�M2þ i�� : (5)

We evaluate ��ðNÞ by using light-front coordinates:

k� � k0 � k3, k2 ¼ kþk� � k2?. Thus ��ðNÞ ¼ 3g2�N
M �R

dkþd2k?J, with

J ¼ 1

ið2�Þ4
1

2

Z
dk�F2ðk2Þ

� k � p
kþðp� kÞþðk� � k2?þ�2�i�

kþ Þ½ðp� kÞ� � k2?þM2�i�

pþ�kþ �
:

(6)

The expression Eq. (4) for Fðk2Þ is not written explicitly
here, because the analytic structure is the same as that of
1=ðk2 ��2 þ i�Þ. If 0< kþ < pþ, the first pole in k� is in
the lower half k� plane (LHP) [as are the ones arising from
Fðk2Þ], and the intermediate nucleon pole is in the upper
half plane. We integrate over the upper half plane, so that
the only pole we need to consider is the one in which the
intermediate nucleon is on its mass shell and the momen-
tum k is spacelike. For kþ < 0 and kþ > pþ, all of the
poles are on the same side of the real axis, and one obtains
0. We take the residue of the integral for which the nucleon

is on-shell so that k� ¼ p� � M2þk2?
pþ�kþ . Using the residue

theorem and integrating over kþ leads to the result

��ðNÞ ¼ �3g2�N
�

8Mð2�Þ3
Z 1

0
dt

tF2ð�tÞ
ðtþ�2Þ

�
�
� t

M2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

M4
þ 4t

M2

s �
: (7)

This result is obtained by using the pseudoscalar form of
�N coupling in Eq. (3), but the use of pseudovector
coupling would give the same result, because the inter-
mediate nucleon is on its mass shell.
To proceed, we use a specific form of the form factor F,

the commonly used dipole parametrization

FðQ2Þ ¼ 1=½1þ ðQ2=M2
AÞ�2; (8)

with MA as the so-called axial mass. The values of MA are
given byMA ¼ 1:03� 0:04 GeV as reviewed in Ref. [21].
This range is consistent with the one reported in a later
review [27]. A somewhat lower value (0.85 GeV) is ob-
tained [28] if one restricts the extraction region to very low
values ofQ2, but we need higher values to evaluate Eq. (7).
Using this dipole parameterized form factor F gives

��ðNÞ ¼ �3Mg2�N
�

4ð2�Þ3
1

6ð4b � 1Þ5=2ða� bÞ4
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4� bÞb
p �

ða� bÞ2½aðb� 10Þ þ 2ðb� 1Þb� � 3a2ðb� 4Þ2b log
�
b

a

��

þ 6f4a3 þ a2ðb� 6Þb½ðb� 4Þbþ 6� � 2ab2½ðb� 10Þbþ 18� � 2ðb� 2Þb3gtan�1

� ffiffiffiffiffiffiffiffiffiffiffiffi
4

b
� 1

s �
þ 6abðb� 4Þ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 4Þaðb� 4Þbp
tan�1

� ffiffiffiffiffiffiffiffiffiffiffiffi
4

a
� 1

s ��
; a � �2=M2; b � M2

A=M
2: (9)
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To relate to chiral perturbation theory, we expand in
powers of a up to order �4 and b around unity to obtain
a very accurate representation of the exact expression for
0 � a � 0:04, 0:6 � b � 1:6. We find

e��ðNÞ¼�3Mg2�N
�

4ð2�Þ3
�
2�

27
ffiffiffi
3

p þ
�
�1

6
� 10�

27
ffiffiffi
3

p
�
aþ�a3=2

þ
��

2

3
þ104�

81
ffiffiffi
3

p
�
a2�16�a

81
ffiffiffi
3

p þ 8�

81
ffiffiffi
3

p
�
ðb�1Þ

þa2
�
logðaÞ

2
� 67�

27
ffiffiffi
3

p �4

3

��
; (10)

where the tilde indicates that a chiral expansion has been
made. The term independent of the pion mass provides a
�0:222M correction to the bare nucleon mass, in contrast
with an early approach (not using the heavy baryon expan-
sion) which gives a contribution of formal order
MðM=4�f�Þ2 [29]. The term of order �3 reproduces the
standard expression �3g2A=ð32�f2�Þ�3 [30].

The next step is to include terms with an intermediate�,
the baryon excited state of lowest mass, which couples
strongly to the �N system. The effects of other intermedi-
ate baryons are not included in this first evaluation, but our
technique can be applied to those states. We use the
isospin-invariant interaction Lagrangian of the form

L�N� ¼ g�N�

2M
��i
�ðp0Þg��uðpÞ@��i þ H:c: [22,23], which

yields the same result as the gauge-invariant coupling of
Ref. [12] for an on-shell intermediate �. We note that �i is

a vector spinor in both spin and isospin space and g�N� ¼ffiffiffi
6

p
=2G�N�ð0Þ, a notational relation between renormalized

coupling constants [22]. The contribution of the intermedi-
ate � to the nucleon self-energy is given by

��ð�Þ¼ i2

�
g�N�

2M

�
2
�uðPÞ

Z d4k

ð2�Þ4

� ð6p�6kþM�Þ
ðk2��2þ i�Þ½ðp�kÞ2�M2

�þ i��

�ðp�kÞ2
M2

�

Pð3=2Þ
�� ðp�kÞk�k�uðPÞF2

�ðk2Þ; (11)

where the factor of 2 arises from the isospin matrix
element, M� is the mass of the �, and our notation for

the projection operator Pð3=2Þ
�� is given in Ref. [12]. We take

the ratio of coupling constants to be ðg�N�

g�N
Þ2 ¼ 72=25,

which is the SUð6Þ quark model result. The form factor
F� is defined via G�N�ðtÞ � g�N�F�ðtÞ ¼ 2M

f�
CA
5 ðtÞ.

Performing the spin average leads to the result

��ð�Þ ¼ 2

�
g�N�

2M

�
2 1

M

Z d4kF2
�ðk2Þ

ið2�Þ4 ðM2 � p � k

þMM�Þ ðp� kÞ2
M2

�

2

3

�
k2 � ½k � ðp� kÞ�2

ðp� kÞ2
�

� 1

ðk2 ��2 þ i�Þ½ðp� kÞ2 �M2
� þ i�� : (12)

We evaluate ��ð�Þ by using light-front coordinates in a
procedure analogous to that used for ��ðNÞ. The integral
over k� is done in the upper half k� plane, so that the only
pole is the one in which the intermediate � is on its mass
shell and the momentum k is spacelike. The result is

��ð�Þ ¼ �2

�
g�N�

2M

�
2 �

Mð2�Þ3
1

3

Z 1

0
dt

F2
�ð�tÞ

ðtþ�2Þ
�

�
tþ 1

4M2
�

ðM2 �M2
� þ tÞ2

�

� 1

2
½ðMþM�Þ2 þ t�

��tþM2 �M2
�

2M2

þ 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� �M2 þ tÞ2 þ 4tM2
q �

: (13)

We turn to numerical evaluations. Lattice calculations
[24] indicate that the ratio G�N�ðtÞ=G�NðtÞ is constant as a
function of the spacelike values of t; thus, here we use
F�ðtÞ ¼ FðtÞ. The integration of Eq. (13) yields a lengthy
closed form expression. To gain insight and compare with
the general form of the chiral expansion of baryon masses
in QCD, e.g., [31–33], we take MA ¼ M, b ¼ 1 and ex-

pand in �=M, (�� 0:72), � � M2
�
�M2

M2 to find

e��ð�Þ ¼ �2M

�
g�N�

2

�
2 �

ð2�Þ3
1

3
½f1ðaÞ

þ ð�� 0:72Þf2ðaÞ�; (14)

f1ðaÞ � �0:888a2 þ 1:01a2 logðaÞ � 1:55a2½logðaÞ
þ 1:20� � 0:402a2½logðaÞ þ 1:24� � 0:00369a

þ 0:280a logðaÞ þ 0:310; (15)

f2ðaÞ � f5:48a2 þ 1:46a2 logðaÞ þ 2:39a2½logðaÞ þ 1:20�
þ 0:128a2½logðaÞ þ 1:24� þ 1:02a

þ 0:318a logðaÞ � 0:0196g; (16)

where the tilde indicates that a chiral expansion has been
made. The terms of order �4 log�2 emphasized by
Refs. [5,34] are included, but the expression also contains
previously noted [33] dominating nonanalytic terms of the
form �2 log�2.
The total pionic contribution to the nucleon mass �� is

given by

�� � ��ðNÞ þ��ð�Þ; (17)

and the chiral approximation e�� is given by e�� �e��ðNÞ þ e��ð�Þ. These are shown in Fig. 2 as a function
of the varying pion mass �, the only parameter that is

varied. Bare massesM0 ¼ 2:42 GeV and eM0 ¼ 2:06 GeV

have been added to �� and e�� so as to reproduce the
lattice data point at�=4�f� ¼ 0:252ð� ¼ 293Þ MeV. We
useMA ¼ 1:03 GeV. The use of the exact expression gives
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an approximately linear dependence on the pion mass, in
agreement with the ‘‘surprisingly linear’’ results of lattice
QCD simulations [8,35], found for values of � greater
than about 290 MeV. The LHP lattice data [35] are
shown, and these are consistent with other lattice calcu-
lations as reviewed. Varying the value of MA within the
stated range changes the value of �� only for �>
0:5 GeV and by 5% or less. The low-order chiral approxi-
mation of Eqs. (10) and (14) fails badly, showing that the
chiral logarithms do not dominate for the relatively large
values of � used in many previous lattice QCD calcula-
tions. One could carry out the expansions of Eqs. (10) and
(14) to higher order in �, but convergence requires many
terms. One achieves a satisfactory description of �ðNÞ
up to � ¼ 0:65 GeV by keeping terms up to order �24

and of �ð�Þ up to � ¼ M� �M by keeping terms up to
order �20.

It is worthwhile to compare our procedure with that of
some others. For example, if one uses the heavy baryon
limit to simplify Eq. (3), evaluates the integral by taking
the pion to be on its mass shell, and regularizes the diver-
gent integral over momentum by using a cutoff at a maxi-
mummomentum, one obtains results that correspond to the
terms used in Ref. [5]. The relativistic procedure of
Ref. [36] avoids the use of the heavy baryon limit by
treating the nucleon recoil terms using an expansion pro-
cedure and uses dimensional regularization. We include all
of the recoil terms and employ a cutoff procedure that is
constrained by experimental data. In chiral perturbation
theory, our procedure corresponds to keeping a specific set
of higher-order terms with a fixed relation between them, a
relation fixed by experimental data.

Our results do not include contributions of order higher
than 1=f2�. These may be considered as keeping the lowest
order pion cloud corrections using an expansion in powers
of " � 1=ð4�f�RÞ2, where R is a confinement radius

[1,37,38]. Here R� ffiffiffiffiffiffi
12

p
=MA, so " 	 1=12. Thus we ex-

pect our results for the terms computed here to be accurate
within about 10%. This argument was mainly applied to
terms involving combinations of couplings of the nucleon
to a single pion but also holds for the n-pion-nucleon

vertex, e.g., as appearing in Fig. 1(d). These terms enter
at higher orders in� in chiral perturbation theory [39]. The
coupling constant g�N and the confinement sizes of the
pion and the nucleon, although not explicit in chiral per-
turbation theory, enter into the calculation of the diagram in
terms of quarks and gluons and via the implicit dependence
of f� and g�N on the underlying strong coupling constant
�S. Therefore, we expect that the terms of the chiral
Lagrangian will be consistent with the expansion in ".
To test our treatment of the nucleon self-energy, we

consider the contribution to lepton-nucleon deep inelastic
scattering arising from virtual pions. This is related to the
termM�, obtained from Feynman rules for the diagram of
Fig. 1(b), as

M � ¼ 2M
@��

@�2
: (18)

This expression does not involve a ‘‘probability,’’ because
the square of a nucleon light-front wave function does not
appear. Note that charge and momentum are explicitly
conserved: Production of a pion of momentum k is accom-
panied by an intermediate nucleon of momentum p-k. The
integrations over k� and k? are carried out explicitly, and
with the definition y ¼ kþ=pþ one finds

M� ¼
Z 1

0
dyf�ðyÞ; f�ðyÞ � fN�ðyÞ þ f��ðyÞ;

fN�ðyÞ � 3g2�N
�

2ð2�Þ3
Z 1

y2M2=ð1�yÞ
dt

tF2ð�tÞ
ðtþ�2Þ2 ;

f��ðyÞ � 2

�
g�N�

2M

�
2 �

ð2�Þ3
2

3

Z 1

½y2M2þyðM2
�
�M2Þ�=ð1�yÞ

� dt
F2ð�tÞ
ðtþ�2Þ2

�
tþ 1

4M2
�

ðM2 �M2
� þ tÞ2

�

� 1

2
½ðMþM�Þ2 þ t�: (19)

The functions fN�ðyÞ and f��ðyÞ are shown in Fig. 3, where
one observes that these functions are of roughly equal
importance.
The change in the quark distribution functions of the

nucleon, �qiðxÞ, from this effect is given by the convolu-
tion formula as �qiðxÞ ¼

R
1
x dyf�ðyÞq�i ðx=yÞ, with q�i the

distribution functions for quarks of flavor i in the pion. The

0.0 0.2 0.4 0.6 0.8 4 f

1.0

1.2

1.4

1.6

1.8

2.0
M GeV

FIG. 2 (color online). Nucleon mass as a function of �. Square
blocks: LHP lattice data [35]. Solid line: �� of Eqs. (17), (9),

and (13). Dashed line: Chiral approximation e�� ¼ e��ðNÞ þe��ð�Þ, Eqs. (10) and (14).
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FIG. 3 (color online). yf�ðyÞ for the intermediate �N and ��
states for MA ¼ 0:99; 1:03; 1:07 GeV.
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related contribution to the nucleon structure function
�F2ðxÞ is

�F2ðxÞ ¼
Z 1

x
yf�ðyÞF�

2 ðx=yÞdy; (20)

where F�
2 is the pion structure function [9,40].

An integral involving the difference between the proton
and neutron structure functions is particularly interesting:

Z 1

0

dx

x
½Fp

2 ðxÞ � Fn
2ðxÞ� ¼ 1=3� 2

3

Z 1

0
dx½ �dðxÞ � �uðxÞ�;

(21)

where the first term, obtained if the bare nucleon has a
symmetric sea, i.e., �d ¼ �u, represents the Gottfried sum
rule [41]. Experiment has clearly established violation of
the Gottfried sum rule, and the most precise determination
of the sea asymmetry [42] is

D �
Z 1

0
½ �dðxÞ � �uðxÞ�dx ¼ 0:118� 0:012: (22)

Henley and Miller [10] showed that the pion cloud pro-
vides a natural explanation of the measured asymmetry.
For Fig. 1(b), the pion cloud of a proton will include
�þðu �dÞ and the �0, which has equal numbers of �d and �u.
Only valence quarks of the pions are considered; the pion
sea distributions are assumed to be symmetric. The proba-
bility for a �þn intermediate state is 2=3, and that for a
�0p state is 1=3. Including also the effects of an inter-
mediate � leads to

D� ¼
Z 1

0
dyy

�
2

3
fN�ðyÞ � 1

3
f��ðyÞ

�
; (23)

with the probability of ���þþ ¼ 1=2 and that for
�þ�0 ¼ 1=6. Since a bare baryon is assumed to have a
symmetric sea, possible contributions from Fig. 1(c) do not
enter. By using MA ¼ 1:03 GeV, the nucleonic contribu-
tion is 0.173, and the � contribution is �0:064, so that the
total is 0.109, within the experimental range of Eq. (22).

In summary, our light-front treatment of the relevant
Feynman diagrams reveals that the pion-baryon vertex
function appears only between on-mass-shell baryons.
This allows the vertex function to be expressed in terms
of one variable, the invariant momentum transfer t, and to
be constrained by experimental data. All ambiguities re-
garding the theoretical input needed to evaluate effects of
the pion cloud to second order in the coupling constants for
the effects of intermediate N and � are resolved. The
uncertainty due to the neglect of higher-order terms is
estimated to be about 10%. Our procedure reproduces the
observed linear dependence of the nucleon mass on the
pion mass found in lattice QCD calculations and the flavor
asymmetry of the nucleon sea. This work has implications
for nucleon-nucleon scattering, because one is instructed to
use the coupling implied by Eq. (1), and also for computing
pion cloud effects on the elastic electromagnetic form
factors of nucleons [43].
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