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The total entropy production of stochastic systems can be divided into three quantities. The first

corresponds to the excess heat, while the second two comprise the housekeeping heat. We denote these

two components the transient and generalized housekeeping heat and we obtain an integral fluctuation

theorem for the latter, valid for all Markovian stochastic dynamics. A previously reported formalism is

obtained when the stationary probability distribution is symmetric for all variables that are odd under time

reversal, which restricts consideration of directional variables such as velocity.
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For over 100 years the statement of the second law of
thermodynamics stood simply as the Clausius inequality.
However, in recent years advances in technology have
encouraged the thermodynamic consideration of small
systems which has led to the generalization of the concept
of entropy production: it may be associated with individual
dynamical realizations revealing a wealth of relations valid
out of equilibrium. Such extensions had their origins in the
dissipation function of Evans et al. for thermostatted sys-
tems that led to the fluctuation theorem [1–4] with similar,
but asymptotic relations for chaotic systems [5], which
were extended to Langevin dynamics [6] followed by
general Markovian stochastic systems [7]. Crooks and
Jarzynski [8–10] then derived work relations for a variety
of dynamics which held for finite times. These were fol-
lowed by similar generalized relations for the entropy
production associated with transitions between stationary
states [11], the total entropy production [12] and the heat
dissipation required to maintain a stationary state [13].
More recently the relationship between the latter quantities
has been explored [14–17] resulting in a formalism
involving a division of the total entropy change into two
distinct terms, the adiabatic and nonadiabatic entropy pro-
ductions [18–20], each of which obeys appropriate fluc-
tuation relations and which map onto the housekeeping and
excess heats, respectively, of Oono and Paniconi [21]. We
seek to take such a formalism and generalize its scope by
the explicit inclusion of both even (e.g., spatial) and
odd (e.g., momentum) variables that transform differently
under time reversal. In doing so we define a new quantity
that obeys an integral fluctuation theorem for all time.

Specifically, we consider the dynamics of a general
set of variables x ¼ ðx1; x2; . . . ; xnÞ that behave differently
under time reversal such that "x ¼ ð"1x1; "2x2; . . . ; "nxnÞ,
where "i ¼ �1 for even and odd variables xi, respectively.
Odd variables arise in the discussion of directional quan-
tities and consequently such a consideration is essential
when discussing velocities. The entropy production of a
path of duration � depends on two probabilities. The first is

the path probability, PF½ ~x�, defined as the probability of the
forward trajectory, ~x ¼ xðtÞ for 0 � t � �, with a distri-
bution of starting configurations, PFðx; 0Þ, that acts as an
initial condition for the general master equation (relevant
examples arise, for example, in the context of full phase
space [22,23]):

@PFðx; tÞ
@t

¼ X
x0
Tðxjx0; �F

t ÞPFðx0; tÞ; (1)

where Tðxjx0; �F
t Þ is a matrix of transition rates between

configurations x0 and x, defining the normal dynamics,
parametrized by the forward protocol �F at time t. We use
notation TðxjxÞ ¼ �P

x0�xTðx0jxÞ which describes the
mean escape rate. The path probability of some sequence
of N transitions to configurations xi from xi�1 at times ti,
such that t0 ¼ 0 and tNþ1 ¼ �, can then be computed as a
function of transition rates and exponential waiting times

PF½ ~x� ¼ PFðx0; 0Þe
R

t1
t0
dt0Tðx0jx0;�F

t0 Þ

�YN
i¼1

Tðxijxi�1; �
F
tiÞdtie

R
tiþ1
ti

dt0Tðxijxi;�F

t0 Þ: (2)

We compare this probability to that of another trajectory ~x�,
protocol ��, initial condition P�ðx�0; 0Þ and chosen dynam-

ics, denoted P�, and write

A½ ~x� ¼ ln½PF½ ~x�=P�½ ~x���: (3)

Such a quantity may obey an integral fluctuation theorem
(IFT) which may be derived by explicit summation over all
possible paths, ~x, for which PF½ ~x� � 0 as follows

hexp½�A½ ~x��iF ¼ X
~x

PF½ ~x� exp½�A½ ~x�� ¼ X
~x

PF½ ~x�P
�½ ~x��
PF½ ~x�

¼ X
~x�
P�½ ~x�� ¼ 1: (4)

We assume a one-to-one mapping between ~x and ~x�
(a condition equivalent to a Jacobian of unity in the
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transformation) so that we may consider the summation
over ~x� to be equivalent to that over ~x. We also require
that P�½ ~x�� ¼ 0 for all PF½ ~x� ¼ 0 such that the final sum-
mation contains all possible paths ~x�, meaning the required
normalization ofP�½ ~x�� then yields the result of unity. A key
result is the implication hA½ ~x�iF � 0 by Jensen’s inequality.

A common choice for P�, and that used to construct the
total entropy production, is that of the normal dynamics
under the reversed protocol, denoted P� ¼ PR. Given the
specification of the normal dynamics, we point out that all
further specifications, including the choice of protocol, can
be systematically derived from the appropriate path trans-
formation ~x�, which we must choose carefully in conjunc-
tion with the dynamics so as to obey the above conditions.
At this point we must be clear that given a transition x ! x0
under the normal dynamics, the transition x0 ! x is not, in
general, possible under those same dynamics. Explicitly,
we can construct models such that Tðx0jxÞ � 0 while
Tðxjx0Þ ¼ 0 (as an intuitive example: Hamiltonian dynam-
ics cannot produce a negative positional step while the
velocity is positive). The correct path, ~x�, to consider is
the time-reversed trajectory proper which includes a
reversal of sign for all odd variables. This is the choice
x�ðtÞ ¼ xyðtÞ ¼ "xð�� tÞ and it satisfies the condition
P�½ ~x�� ¼ PR½ ~xy� ¼ 0 for all PF½ ~x� ¼ 0 required for an
IFT. The reversed protocol �� ¼ �R may be similarly
obtained from the forward protocol, which may be treated
as an even dynamical variable, meaning it transforms to
yield ��

t ¼ "�F
��t ¼ �F

��t ¼ �R
t . And finally we require the

choice of initial condition for the reverse path. This may be
informed physically: we seek to characterize the irrever-
sibility of the forward path and so initiate the reverse
behavior by time reversing the coordinates, xN , and distri-
bution, PFðxN; �Þ, at the end of the forward process and
evolve forward in time from there. The distribution can
also be found by applying the transformation rules used to

obtain the trajectory ~xy from ~x such that P�ðx�0; 0Þ ¼
PRðxy0 ; 0Þ ¼ "̂PFð"xN; �Þ ¼ PFð""xN; �Þ ¼ PFðxN; �Þ
where "̂ denotes the time-reversal operation on the distri-
bution. In this instance the path probability is therefore

PR½ ~xy� ¼ PRðxy0 ; 0Þe
R

t1
t0
dt0Tðxy

0
jxy

0
;�R

t0 Þ

�YN
i¼1

Tðxyi jxyi�1; �
R
ti Þdtie

R
tiþ1
ti

dt0Tðxyi jxyi ;�R

t0 Þ: (5)

We have xyi ¼ "xN�iso we may rearrange to give

PR½ ~xy� ¼ PFðxN; �Þe
R

tNþ1
tN

dt0Tð"x0j"x0;�R

t0 Þ

�YN
i¼1

e

R
tN�iþ1
tN�i

dt0Tð"xij"xi;�R

t0 Þ

� Tð"xi�1j"xi; �R
tN�iþ1

Þdti: (6)

We then perform a change of variable t0 ! �� t0 and use
�R
ti ¼ �F

tN�iþ1
such that

PR½ ~xy� ¼ PFðxN; �Þe�
R

t0
t1
dt0Tð"x0j"x0;�F

t0 Þ

�YN
i¼1

e
�
R

ti
tiþ1

dt0Tð"xij"xi;�F

t0 Þ

� Tð"xi�1j"xi; �F
tiÞdti: (7)

A comparison of PF½x� and PR½xy�characterizes the irre-
versibility of the forward path and defines the total entropy
production (using units kB ¼ 1)

�Stot ¼ lnPF½ ~x� � lnPR½ ~xy�

¼ ln
PFðx0; 0Þ
PFðxN; �Þ

þXN
i¼0

ln
e

R
tiþ1
ti

dt0Tðxijxi;�F

t0 Þ

e

R
tiþ1
ti

dt0Tð"xij"xi;�F

t0 Þ

þXN
i¼1

ln
Tðxijxi�1; �

F
tiÞ

Tð"xi�1j"xi; �F
tiÞ
; (8)

which by its definition and Eq. (4) obeys [12]

hexp½��Stot�iF ¼ 1: (9)

We find that this form of �Stot is more complicated than
previous descriptions [18,24] unless "x ¼ x. Note that if
detailed balance holds, such that PeqðxÞTðx0jxÞ ¼
Peqð"x0ÞTð"xj"x0Þ, we expect Peq, the equilibrium state
for a given �F

t , to satisfy PeqðxÞ ¼ Peqð"xÞ due to time-
reversal invariance, along with TðxjxÞ ¼ Tð"xj"xÞ.
For a system in equilibrium, we therefore conclude that
�Stot ¼ 0 for all paths.
Next we consider alternative specifications of P�. We

consider the adjoint dynamics which lead to the same
stationary state, Pstðx; �F

t Þ, as the normal dynamics, but
generate flux of the opposite sign in that stationary state. It
can be shown [14,18,24] that this requires an adjoint
transition rate matrix Tad described by

Tadðxjx0; �F
t Þ ¼ Tðx0jx; �F

t Þ P
stðx; �F

t Þ
Pstðx0; �F

t Þ
: (10)

However, in the same way that the normal dynamics may
not, in general, permit transitions x0 ! x or "x ! "x0,
similarly the adjoint dynamics may not, in general, permit
transitions x ! x0 or "x0 ! "x. Thus we must consider the
representation of the adjoint dynamics as either Eq. (10) or

Tadð"x0j"x; �F
t Þ ¼ Tð"xj"x0; �F

t ÞP
stð"x0; �F

t Þ
Pstð"x; �F

t Þ
; (11)

depending on the specific transition being considered.
Explicitly, when choosing P�½ ~x��, we should not consider
Pad½ ~x� or Pad½ ~xy� since these might violate the condition
P�½ ~x�� ¼ 0 for all PF½ ~x� ¼ 0 required for an IFT.
Under the adjoint dynamics, however, an appropriate

transformation of ~x is x�ðtÞ ¼ xRðtÞ ¼ xð�� tÞ. Applying
the transformation rules used to obtain ~xR yields the
reverse protocol as before ��

t ¼ �F
��t ¼ �R

t and the initial
distribution P�ðx�0; 0Þ ¼ Pad;RðxR0 ; 0Þ ¼ PFðxN; �Þ. The

path probability is then
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Pad;R½ ~xR� ¼ Pad;RðxR0 ; 0Þe
R

t1
t0
dt0TadðxR0 jxR0 ;�R

t0 ÞYN
i¼1

TadðxRi jxRi�1; �
R
ti Þdtie

R
tiþ1
ti

dt0TadðxRi jxRi ;�R

t0 Þ

¼ PFðxN; �Þe�
R

t0
t1
dt0Tadðx0jx0;�F

t0 ÞYN
i¼1

e
�
R

ti
tiþ1

dt0Tadðxijxi;�F

t0 ÞTadðxi�1jxi; �F
tiÞdti: (12)

We then construct a quantity of the form given in Eq. (3),
utilize Eq. (10) and the property TadðxjxÞ ¼ TðxjxÞ, valid
by means of balance, to obtain

�S1 ¼ lnPF½ ~x� � lnPad;R½ ~xR�

¼ ln
PFðx0; 0Þ
PFðxN; �Þ

þXN
i¼1

ln
Pstðxi; �F

tiÞ
Pstðxi�1; �

F
tiÞ
; (13)

which through its definition and Eq. (4) obeys

hexp½��S1�iF ¼ 1; (14)

which exists in the literature as the Hatano-Sasa relation
[11] or IFT for the nonadiabatic entropy production [18–
20]. Let us now consider, once again under the adjoint
dynamics, the path transformation choice x�ðtÞ ¼ xTðtÞ ¼
"xðtÞ. Applying the transformation rules, we obtain the
protocol ��

t ¼ "�F
t ¼ �F

t and initial distribution
P�ðx�0; 0Þ ¼ Pad;FðxT0 ; 0Þ ¼ "̂PFð"x0; 0Þ ¼ PFðx0; 0Þ. The
path probability for this case is therefore

Pad;F½ ~xT� ¼ Pad;FðxT0 ; 0Þe
R

t1
t0
dt0TadðxT0 jxT0 ;�F

t0 Þ YN
i¼1

TadðxTi jxTi�1; �
F
tiÞdtie

R
tiþ1
ti

dt0TadðxT0 jxT0 ;�F

t0 Þ

¼ PFðx0; 0Þe
R

t1
t0
dt0Tadð"x0j"x0;�F

t0 Þ YN
i¼1

Tadð"xij"xi�1; �
F
tiÞdtie

R
tiþ1
ti

dt0Tadð"xij"xi;�F

t0 Þ: (15)

By Eq. (3) this then allows us to define

�S2 ¼ lnPF½ ~x� � lnPad;F½ ~xT�

¼ XN
i¼0

ln
e

R
tiþ1
ti

dt0Tðxijxi;�F

t0 Þ

e

R
tiþ1
ti

dt0Tð"xij"xi;�F

t0 Þ
þXN

i¼1

ln
Pstð"xi�1; �

F
tiÞ

Pstð"xi; �F
tiÞ

� Tðxijxi�1; �
F
tiÞ

Tð"xi�1j"xi; �F
tiÞ
; (16)

which similarly must obey

hexp½��S2�iF ¼ 1: (17)

Unlike �S1, the quantity �S2 is new in the literature. We
must immediately recognize that �Stot � �S1 þ �S2 dif-
fering by a quantity

�S3 ¼
XN
i¼1

ln
Pstðxi�1; �

F
tiÞPstð"xi; �F

tiÞ
Pstðxi; �F

tiÞPstð"xi�1; �
F
tiÞ

(18)

such that �Stot ¼ �S1 þ �S2 þ �S3. If "x ¼ x, then
�S3 ¼ 0 and �S2 reduces to the adiabatic entropy produc-
tion appearing in [18–20]. More importantly we must
recognize that �Stot � �S1 ¼ �S2 þ �S3 ¼
lnPad;R½ ~xR� � lnPR½ ~xy� or �Stot � �S2 ¼ �S1 þ�S3 ¼
lnPad;F½ ~xT� � lnPR½ ~xy� cannot be written in the form re-
quired for Eq. (4) and so do not obey an IFT and do not
necessarily have any bounds on the sign of their mean. We
proceed by following the formalism of Seifert [12,25] and
write

�Stot ¼ ln
PFðx0; 0Þ
PFðxN; �Þ

þ �Q

Tenv

¼ �Ssys þ �Q

Tenv

; (19)

where Tenv is the temperature of the environment, and that
of Oono and Paniconi, such that total heat transfer to the
environment, �Q, is the sum of the excess heat and house-
keeping heat�Q ¼ �Qex þ �Qhk [21]. The housekeeping
heat is associated with the entropy production in stationary
states and arises from a nonequilibrium constraint that
breaks detailed balance. The sum�S2 þ �S3 is manifestly
the entropy production in the stationary state, and since we
are considering Markov systems, both �S2 and �S3 are
only nonzero when detailed balance is broken. Hence it is
sensible to associate �S2 þ�S3 with the housekeeping
heat such that

�Qhk ¼ ð�S2 þ �S3ÞTenv: (20)

�S1 is zero for all trajectories in the stationary state
consolidating the definition of the excess heat as the heat
transfer associated with an entropy flow that exactly
cancels the change in system entropy in the stationary state
such that

�Qex ¼ ð�S1 � �SsysÞTenv: (21)

However, the prevailing definition of the housekeeping
heat does not make clear its properties when the system
is not in a stationary state. A reported formalism suggests
that it is associated with the adiabatic entropy production,
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which serves as a general measure of the breakage of
detailed balance [18–20]. When considering cases where
"x ¼ x, this is a consistent approach and the mean house-
keeping heat obeys strict positivity requirements suggest-
ing the entropy additively increases due to nonequilibrium
constraints and a lack of detailed balance on top of that
arising from relaxation. However, with the inclusion of odd
variables this simple picture no longer holds, with an
ambiguity illustrated by the fact that any of �S2, �S3, or
�S2 þ�S3 could be argued to be a measure of the depar-
ture from detailed balance. In light of Eq. (17) we propose
that it is sensible to divide the housekeeping heat into two
quantities which map onto �S2 and �S3. It is important to
observe that, on average, the rate of change of �S3 van-
ishes in the stationary state by means of balance: the path
integral over an increment in �S3 explicitly vanishes.
Consequently we define the ‘‘transient housekeeping
heat’’ and the ‘‘generalized housekeeping heat’’

�Qhk;T ¼ �S3Tenv �Qhk;G ¼ �S2Tenv (22)

such that �Qhk ¼ �Qhk;T þ �Qhk;G. Since
hd�S3=d�iF;st ¼ 0, the generalized housekeeping heat,
when averaged, has the mean properties previously attrib-
uted to the housekeeping heat: it describes the heat flow
required to maintain a nonequilibrium stationary state and
is rigorously non-negative. Our central result, therefore, is

hexp½��Qhk;G=Tenv�iF ¼ 1 (23)

so h�Qhk;GiF � 0 for all times, protocols, and initial
conditions. As a corollary we also state that, in general,

hexp½��Qhk=Tenv�iF � 1 (24)

providing no bounds on h�QhkiF except in the stationary
state when �S1 ¼ 0 and �Qhk=Tenv ¼ �Stot or generally
when Pstð"x; �F

t Þ ¼ Pstðx; �F
t Þ. As such, the view that the

mean rate of entropy production is the sum of two specific
non-negative contributions as in [18–20], is incomplete.
The contribution associated with a nonequilibrium con-
straint requires further unravelling, particularly when out
of stationarity.

To explore the nature of the housekeeping heat we
consider its behavior in the approach to the stationary state
of a simple model of particle dynamics on a ring. The
phase space consists of L identical spatial positions
X1; X2 . . . ; XL and two velocities labeled þ and � as
shown in Fig. 1 with the time-reversal properties "Xi� ¼
Xi� necessitated by the one-way nature of many of the
transitions. The stationary state probabilities that arise
from these dynamics are PstðXiþÞ ¼ A=½LðAþ BÞ� and
PstðXi�Þ ¼ B=½LðAþ BÞ�. Any difference between the
velocity reversal rates A and B gives rise to a nonequilib-
rium stationary state by providing a stationary particle
current, which for A > B runs from left to right.
Contributions �S2 and �S3 associated with particle be-
havior consisting of instantaneous transitions and waiting

periods are indicated. We consider particle behavior over a
small time interval dt, and compute the mean entropy
production rates to leading order in dt. Examining the
path probability in Eq. (2) we need only consider N ¼ 0
or N ¼ 1 transitions. Identifying leading order terms in the
products of P, T, exponentiated waiting times and�S3 that
make up the average of the form given in Eq. (4) yields

dh�S3iF
dt

¼XL
i¼1

2PðXiþ; tÞB ln
A

B
þ 2PðXi�; tÞA ln

B

A
: (25)

For nonstationary P the sign of the mean rate is un-
bounded: for example, if all the probability were uniformly
distributed initially amongst the þ velocity states it would
equal 2B lnðA=BÞ, while if it were distributed over the �
states it would be �2A lnðA=BÞ instead. Such nonzero
contributions to�S3 require an asymmetric stationary state
in odd variables, which thus explains their absence when
the stationary velocity distribution is assumed to be symmet-
ric, such as in overdamped Langevin descriptions (see [13]
and examples in [20]). However, in the stationary state with
P ¼ Pst, dh�S3iF=dt is demonstrably equal to zero as
claimed. By similar means

dh�S2iF
dt

¼ XL
i¼1

PðXiþ; tÞ
�
A� B� B ln

A

B

�

þ PðXi�; tÞ
�
B� A� A ln

B

A

�
; (26)

which is positive for all positive A and B and reduces to
dh�S2iF;st=dt ¼ ðA� BÞ2=ðAþ BÞ in the stationary state.
We note that the sum of Eqs. (25) and (26) has no bound on
its sign and relates to the inequality in Eq. (24). Further,
dhexp½��S2�iF=dt ¼ 0 and hexp½��S2ðt ¼ 0Þ�iF ¼ 1,

FIG. 1. Allowed moves between positions Xi and � velocity
states are shown by arrows, with associated rates T. Periodic
boundaries allow jumps from XLþ to X1þ and X1� to XL � . A
given path contributes to the transient and generalized house-
keeping heats, Tenv�S3 and Tenv�S2, respectively, due to tran-
sitions between, and residence times �t at, each phase space
point, as indicated. These correspond to individual terms in the
summations in Eqs. (16) and (18).
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which explicitly demonstrates the expected IFT for any
normalized PðXi�; tÞ. Finally, we note that for A ¼ B, all
contributions vanish in detail as the dynamics produce an
equilibrium stationary state where there is no entropy pro-
duction and thus the housekeeping heat vanishes.

We have extended the formalism found in [11,13,18–20]
and split the total entropy production into two rigorously
positive contributions and a third contribution which has
no bounds on its sign. We have argued that this final
quantity is, in the mean, a transient contribution to the
housekeeping heat and it is the mean generalized house-
keeping heat that is rigorously positive for all times. It is
not straightforward to consolidate this with the two causes
of time-reversal asymmetry, namely, relaxation to the sta-
tionary state and imposed nonequilibrium constraints: �S3
exists only in the presence the latter, but is, in the mean, an
additional measure of relaxation to the stationary state. It
could be argued that the nonadiabatic entropy production
and Hatano-Sasa relation do not fully capture the entropy
production due to transitions between stationary states, but
associating �S3 with one or another form of entropy
production is not entirely satisfactory as it occurs when
the line between them is blurred. Nevertheless, either
interpretation elucidates a new layer of complexity in the
theory of entropy production in stochastic systems. Further
exploration in the context of continuous stochastic pro-
cesses is to be reported elsewhere [26].
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