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We argue that the freezing transition scenario, previously explored in the statistical mechanics of 1=f—

noise random energy models, also determines the value distribution of the maximum of the modulus of the

characteristic polynomials of large N � N random unitary matrices. We postulate that our results extend

to the extreme values taken by the Riemann zeta function �ðsÞ over sections of the critical line

s ¼ 1=2þ it of constant length and present the results of numerical computations in support. Our

main purpose is to draw attention to possible connections between the statistical mechanics of random

energy landscapes, random-matrix theory, and the theory of the Riemann zeta function.

DOI: 10.1103/PhysRevLett.108.170601 PACS numbers: 05.90.+m, 05.40.�a, 75.10.Nr

The Riemann zeta-function
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encodes the distribution of the primes p in the positions of
its nontrivial zeros [1]. The Riemann hypothesis, which is
of central importance in mathematics, places these zeros
on the critical line s ¼ 1=2þ it, t 2 R. There has in recent
years been considerable interest, stemming from specula-
tions about a spectral interpretation of the Riemann zeros,
in possible connections between the theory of the zeta
function and quantum mechanics (see, e.g., [2]). Our focus
here is on suggesting a new link with physics via the
statistical mechanics of disordered landscapes.

Some of the most significant questions in the theory of
the zeta function concern the distribution of values it takes
on the critical line, where it behaves like a quasirandom
function of t [essentially because the phases of the terms in
the product in (1) contribute as if they were random]. It was
proved by Selberg, for example, that, as t ! 1,
logj�ð1=2þ itÞj behaves like a Gaussian random variable
with mean zero and variance 1

2 log log t
2� , see, e.g., [3]. In

other words, the typical size of logj�ð1=2þ itÞj is of the
order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
loglogt

p
. As regards the extreme values taken by

the zeta function over long ranges, the Lindelöf hypothesis
asserts that j�ð1=2þ itÞj grows more slowly than any
power of t as t ! 1, the Riemann hypothesis implies
that it is Oðexp½const�fðtÞ�Þ, where fðtÞ ¼ logt=
loglogt, while it is known that j�ð1=2þ itÞj takes values
at least as large as exp½ ffiffiffiffiffiffiffiffi

fðtÞp � infinitely often ([1], pp. 209,
354]. The extreme values thus lie in the range between
these upper and lower bounds (and are significantly larger
than the typical values). The problem of determining where
precisely within this range they lie has attracted consider-
able attention, but remains unresolved. The extreme values

in question are so rare that numerical computations have
failed to settle the matter so far.
One model, proposed by Montgomery, that leads to

predictions for the extreme values is based on the assump-
tion that the local maxima of logj�ð1=2þ itÞj are statisti-
cally independent and that they obey the normal
distribution proved for general values. Under such
assumptions one finds that the typical size of the maximum
value of j�ð1=2þ itÞj should be of the order of

exp½cM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðtÞ loglogðtÞp � [4], where cM is a constant.

This is closer to the lower bound than the upper bound,
implying that the extreme values are not much larger than
the largest value known to be reached infinitely often.
However, the values of logj�ð1=2þ itÞj are, in fact,

strongly correlated in a way that is significant from the
point of view we shall explore here. Specifically, define,
for a fixed t 2 R,

Vð�Þ
t ðxÞ ¼ �2 logj�½12 þ iðtþ xÞ�j (2)

Selberg’s theorem implies that Vð�Þ
t ðxÞ behaves like a

Gaussian random function of x when t ! 1. Such a ran-
dom process is characterized by the two-point correlation

function Cðx1; x2Þ ¼ Vð�Þ
t ðx1ÞVð�Þ

t ðx2Þ, with the bar denot-
ing the average over intervals [t� h=2, tþ h=2], with
h � t chosen so that the intervals contain, asymptotically
(as t ! 1), an increasing number of zeros. A straightfor-
ward calculation, sketched in [5], see also [6], leads to

Cðx1;x2Þ¼
8<
:
�2logjx1�x2j; for 1

logt�jx1�x2j�1;

2loglogt; for jx1�x2j� 1
logt :

(3)

The significance of the logarithmic form of the correlations
will become apparent when we come to make comparisons
with corresponding problems in random-matrix theory and
statistical mechanics.
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Over the past 40 years, inspired by the pioneering work
of Montgomery [7] and Odlyzko [8], considerable evi-
dence has accumulated for connections between the statis-
tical properties of the Riemann zeta function and those of
large random matrices. For example, correlations between
the nontrivial zeros of the zeta function are believed to
coincide asymptotically with those between the eigenval-
ues of large random unitary or Hermitian matrices [7,8],
and the value distribution of �ð1=2þ itÞ is believed to be
related to that of the characteristic polynomials of these
matrices [9–12]. Our purpose here is to connect these two
areas of research to a third, the statistical mechanics of
disordered logarithmically correlated energy landscapes,
see [13–15] and references therein. The analogy we de-
velop suggests that the spin-glass-like freezing transition
that dominates the low-temperature behavior in the statis-
tical mechanical problems also governs the extreme values
taken by the characteristic polynomials of randommatrices
and the zeta function. This sheds new light on the long-
standing problem of determining the maximum size of
�ð1=2þ itÞ.

To establish such a connection we consider the ensemble
of N � N unitary matrices, chosen uniformly at random
from the unitary group UðNÞ (i.e., from the circular uni-
tary ensemble, or CUE). We denote the eigenvalues of a
given matrix UN by expði�1Þ; . . . ; expði�NÞ and the cor-
responding characteristic polynomial by

pNð�Þ ¼ detð1�UNe
�i�Þ ¼ YN

n¼1

ð1� e�ið�n��ÞÞ: (4)

It is instructive to compare Vð�Þ
t ðxÞ from (2) with VðUÞ

N ð�Þ ¼
�2 logjpNð�Þj. It was proved in [9] that VðUÞ

N ð�Þ satisfies a
central limit theorem: the distribution of the values of
logjpNð�Þj tends to a normal with mean zero and variance
2 logN as N ! 1. Identifying the mean density of
the eigenvalues, N=2�, with the mean density of the
Riemann zeros near to height t, 1

2� log t
2� , renders the

agreement with Selberg’s theorem for logj�ð1=2þ itÞj
complete. Importantly for us here, VðUÞ

N has the following
representation [10]:

VðUÞ
N ð�Þ ¼ X1

n¼1

1ffiffiffi
n

p ½e�in�vðNÞ
n þ comp conj� (5)

with
ffiffiffi
n

p
vðNÞ
n ¼ TrðU�n

N Þ. According to [16], as UN varies

in the CUE the coefficients vðNÞ
n for any fixed n tend in the

limit N ! 1 to independent, identically distributed com-
plex Gaussian variables with zero mean and unit variance.
Denoting averages over the unitary group UðNÞ with the
angular brackets, a simple calculation shows that

hVðUÞ
N ð�1ÞVðUÞ

N ð�2Þi tends in the limit N ! 1 to
�2 logð2j sin12 ð�1 � �2ÞjÞ, and so exhibits precisely the

same logarithmic behavior at small distances as in (3).
For large but finite N, the logarithmic divergence can be

shown to saturate at j�1 � �2j � N�1, so after associating
N � log t

2� the correspondence between the small-scale

behavior of VðUÞ
N ð�Þ and Vð�Þ

t ðxÞ becomes complete. This
is significant from the point of view we seek to develop.
Our primary goal is to determine the distribution of the

maximum value of jpNð�Þj over 0 � � � 2� when the
matrix UN ranges over UðNÞ. Our second goal is then to
use the random-matrix results to motivate predictions for
the extreme values of the Riemann zeta function. The first
steps in this direction were taken in [4], where the tail
of the distribution of the maximum values of jpNð�Þj in
0 � � � 2� was found. This tail determines the typical
size of the maximum values expected when UN is sampled
independently a large (exponentially inN) number of times
from within UðNÞ. The results are consistent with the
Montgomery model and lead to a prediction for the value
of the constant cM there.
The focus here will differ from that of [4] in the follow-

ing ways. We shall be concerned with the distribution of
maximum values of the characteristic polynomials of
single matrices, rather than with large numbers of matrices,
and will obtain the full value distribution of the maxima in
the limit as N ! 1, rather than concentrating on the tail
that is relevant when maximizing over many matrices. This
leads to a model for the distribution of maximum values of
j�ð1=2þ itÞj over the intervals T � t � T þ 2�, rather
than 0 � t � T as T ! 1. Furthermore, it makes the
problem of numerical computation of the distribution in
question significantly easier, because one is finding the
maximum of � logT rather than �T logT numbers (the
values of the local maxima).
We start by noting that the maximum value of pNð�Þ can

be characterized in terms of

ZNð�Þ¼ N

2�

Z 2�

0
jpNð�Þj2�d�� N

2�

Z 2�

0
e��VNð�Þd�; (6)

where VNð�Þ ¼ �2 logjpNð�Þj and �> 0. Specifically, if
F ð�Þ ¼ ���1 logZNð�Þ, then

lim
�!1

F ð�Þ ¼ min
�2½0;2�Þ

VNð�Þ ¼ �2 max
�2½0;2�Þ

logjpNð�Þj: (7)

The key observation is that (6) takes the form of the
partition function for a system with energy VNð�Þ and
inverse temperature �. F ð�Þ may then be associated
with the corresponding free energy. Recalling that the
values of VNð�Þ are asymptotically Gaussian distributed
and logarithmically correlated, it is natural to draw com-
parisons with a class of problems that has attracted a good
deal of attention recently in the area of disordered systems,
namely, the statistical mechanics of a particle equilibrated
in a random landscape with logarithmic correlations. Two-
dimensional systems of that sort appear in many contexts,
for example, in the problem of Dirac fermions in a random
magnetic field [17], and one-dimensional analogues were
considered recently in [14,15]. Importantly for us, in the
one-dimensional case the energy landscape is given by a
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regularization of the random Fourier series featuring in (5).
In the statistical mechanical problem there has been a
particular focus on the so-called freezing transition
[13,17] which dominates the low-temperature limit and
determines the extreme value statistics. The latter appears
to be manifestly different from the case of uncorrelated
variables. We shall argue that a similar freezing transition
determines the extreme value statistics of the characteristic
polynomials and hence, conjecturally, of j�ð1=2þ itÞj, and
that therefore the logarithmic correlations exhibited by

VðUÞ
N ð�Þ and Vð�Þ

t ðxÞ play an important role.
The first step is to consider the positive integer moments

hZk
Nð�Þi, k ¼ 1; 2; . . . . Using standard methods of random-

matrix theory (RMT) it is easy to show that

hZk
Nð�Þi ¼ Nk

Z 2�

0
. . .

Z 2�

0

DðkÞ
N ð�Þ

DðkÞ
N ð0Þ

Yk
j¼1

d�j
2�

; (8)

where DðkÞ
N ð�Þ ¼ detðMð�Þ

i�jÞN�1
i;j¼0 is the determinant of a

Toeplitz matrix

Mð�Þ
i�j ¼

Z 2�

0
ei�ði�jÞ Yk

p¼1

½2� 2 cosð�� �pÞ�� d�2� : (9)

When N ! 1 the asymptotics of such Toeplitz determi-
nants is well known [18] to be given by

DðkÞ
N �

�
N�2 G2ð1þ �Þ

Gð1þ 2�Þ
�
k Yk
r<s

jei�r � ei�s j�2�2
; (10)

where GðxÞ is the so-called Barnes function. Substituting
(10) back to (8) we see that the resulting expression is the
standard Dyson-Morris version of the Selberg integral [19],
convergent for k < 1

�2 , and divergent for larger k. As we

have k 	 1 the procedure makes sense only for �2 < 1.

Introducing Ze ¼ N1þ�2 G2ð1þ�Þ
Gð1þ2�Þ�ð1��2Þ , we find

hZk
Nð�Þi ¼ Zk

e�ð1� k�2Þ; k < ��2: (11)

The expression (11) for the moments has exactly the same
form as that for the partition function of the landscape of
the circular-logarithmic model (a periodic version of 1=f
noise) [14], but with a different value for the characteristic
scale Ze. This means we can simply translate, mutatis
mutandis, the results of [14] to the values of characteristic
polynomial sampled along the full circle � 2 ð0; 2��. In
particular, we conclude that the maximum value of the
modulus of a CUE characteristic polynomial pNð�Þ in an
interval � 2 ½0; 2�� can be written in the limit N ! 1 as

� 2 max
�2½0;2�Þ

logjpNð�Þj � aN þ bNx; (12)

where aN ¼ �2 logN þ c loglogN þ oð1Þ, with, conjec-
turally, c ¼ 3

2 , bN ¼ 1þOð1= logNÞ, and x is a random

variable taking values distributed with probability density

pðxÞ ¼ 2exK0ð2ex=2Þ; (13)

where K�ðzÞ denotes the modified Bessel function. Two
consequences are particularly noteworthy: (i) the tail of the
probability density of the random variable x is given
asymptotically when x ! �1 by pðxÞ � jxjex, (ii) the
value of the constant c ¼ 3=2. These two features are
believed to be universal characteristics of the extreme
value statistics of the class of logarithmically correlated
random variables [13], and distinguish those from short-
range correlated random variables, for which c ¼ 1=2 and
pðxÞ � ex (Gumbel distribution) [20]. This new class is
believed to include, in particular, the 2DGaussian free field
[21], branching random walks [22], polymers on disor-
dered trees [23], 1=f noise [14,15], and models appearing
in turbulence and financial mathematics [24].
In order to illustrate the extreme value predictions in the

context of the Riemann zeta function we now summarize
the results of preliminary numerical computations. These
involved numerically evaluating �ð1=2þ itÞ over ranges of
length 2�, at various heights T, and finding the maximum
value �maxð2�;TÞ in each range. We used the amortized-
complexity algorithm [25], which is suitable for computing
�ð1=2þ itÞ at many points.
The first test concerns the value of the constant c in (12).

We expect the logarithmic correlations to lead to c ¼ 3
2 ,

rather than c ¼ 1
2 , as would be the case if the zeta corre-

lations were short range. The mean of �maxð2�;TÞ sug-

gested by the model in (12) is � ¼ e�N=ðlogNÞc=2, with
c ¼ 1=2 or 3=2, and � ¼ 0:577 21 . . . , where we set N to
be the nearest integer to logT. At each height a sample that
spans� 107 zeros is used yielding� 107=N sample points
(since there are roughly N zeros in each range of length
2�). In view of Table I, one may conclude that c ¼ 3=2 fits
the data considerably better than c ¼ 1=2, thus supporting
the logarithmic correlations model.
Testing the distribution pðxÞ is more difficult, because

the data converge extremely slowly at that scale. The
results of our initial experiments are summarized in
Fig. 1. Specifically, we consider �2 logj�maxð2�;TÞj þ
2 logN � 3

2 loglogN based on a set of approximately

2:5� 108 zeros near T ¼ 1028. The data are normalized
so that�2 logj�maxð2�;TÞj þ 2 logN � 3

2 loglogN has em-

pirical variance ¼ R
x2pðxÞdx ¼ 3:289 868 13 . . . . The

overall agreement is supportive of (13), especially in
the important tail when x ! �1 and in view of the fact
that lower order arithmetical terms [9,11] have not been

TABLE I. Ratio of data mean ~� to model mean � with
c ¼ 3=2 and c ¼ 1=2.

T N ð ~�=�Þc¼3=2 ð~�=�Þc¼1=2

1022 51 1.001 343 0.504 993

1019 44 0.992 672 0.510 293

1015 35 0.976 830 0.518 057

3:6� 107 17 0.930 533 0.552 856
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incorporated, but cannot be said to be a conclusive
verification at this stage. The behavior in the tail is signifi-
cant because if it were to persist into the large deviation
regime it would suggest that the Montgomery heuristic
significantly underestimates the maximum values achieved
by j�ð1=2þ itÞj, although this seems unlikely.

Finally, we put the specific idea of the freezing to a
numerical test by considering the analogue of the partition
function ZNð�Þ defined by (6) which is clearly

z�ðTÞ ¼ NT

2�

Z Tþ2�

T
j�ð1=2þ iyÞj2�dy; (14)

where NT ¼ log T
2� , and calculating the ensuing free en-

ergy fð�Þ ¼ �½� logðNTÞ��1logz� by averaging over 106

values of T near T ¼ 1028. If freezing is operative, �fð�Þ
is expected to be equal to �þ 1=� for �<�c ¼ 1 and
remain frozen to �fð�Þ ¼ 2 for all �> 1 [13–15]. The

results shown in Fig. 2 (which are renormalized by the
subtraction of lower order arithmetic terms [5]) again are
consistent with this prediction.
To conclude, we have put forward speculations on the

existence and implications of the freezing phenomena seen
in the statistical mechanics of random energy landscape
models in the context of the extreme value distribution of
the characteristic polynomials of large random matrices
and, further, of the Riemann zeta function on the critical
line. We believe this sheds interesting new light on these
problems. In a forthcoming paper [5] we present the details
of our calculations and discuss further the broader picture
of freezing phenomena and their manifestation in the
present context.
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