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We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic

oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival

point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the

few exactly solvable models for infinite-dimensional systems. We compute the Green’s function; in the

case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian

wave functions.
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Non-Markovian quantum dynamics is rapidly becoming
a popular field of research. From the theoretical point of
view, there is increasing interest in understanding the be-
havior of physical systems beyond the Markov approxima-
tion [1–4]. This interest is triggered by novel experiments
[5,6], which do not find an explanation within the standard
Markovian description. Moreover, people are already
speaking of possible future applications, for example, in
describing energy transfer in biological systems [7].

There are different approaches to the description of
(Markovian and non-Markovian) open quantum dynamics
[8–11], among which are stochastic differential equations.
In this approach, one modifies the Schrödinger equation by
introducing new stochastic terms, which mimic the effect
of an external agent (typically, the environment). This
method has particular advantages: it allows for a descrip-
tion in terms of state vectors, instead of density matrices; it
helps in finding exact analytic solutions for the dynamics,
as in the case presented here; and, in some cases, it allows
for faster numerical simulations.

A particularly relevant example of a stochastic differen-
tial equation is the following [12–19]:

d

dt
�t ¼

�
� i

@
Hþ ffiffiffiffi

�
p

qwt � �q2
�
�t; (1)

here, q is the position operator of the particle, H is its
quantum Hamiltonian, � is a positive coupling constant,
and wt is a Gaussian white noise. The equation does not
preserve the norm of the state vector; this is not a problem,
as, at any time, the vector can be appropriately normalized.
This equation plays a key role in several fields. Within
decoherence theory, it represents one of the possible un-
ravellings of the Joos-Zeh master equation [20]; within
collapse models, it represents the simplest description of
a quantum particle undergoing spontaneous collapses in
space [12]; within the continued measurement theory, it
describes a system whose position is continuously mea-
sured [4]. In the following, we will focus our attention on

collapse models, although our results apply also to the
other fields.
If one tries to identify the noise wt with a physical field,

one has to cope with the fact that it presents two unphysical
features: it is an infinite-temperature field, due to the lack
of dissipative terms, and has a white noise spectrum; i.e.,
each frequency contributes with the same weight. These
features can be disturbing, and people worked on improv-
ing the model. The dissipative generalization of Eq. (1) has
been developed in [21]; in the new dynamics, the noise is
such that each system thermalizes to a fixed temperature,
that of the field. The Markovian behavior has been gener-
alized by studying the non-Markovian version of Eq. (1),
where the white noise is replaced by a general Gaussian
(colored) noise [11,22,23].
In this Letter, we present a novel result [24]: the general-

ization of Eq. (1) both to finite-temperature (dissipative)
and colored (non-Markovian) noises and its solution. The
equation is the following:
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The new terms depending on the momentum operator p
account for dissipation, whose strength is determined by
the positive constant �. The temperature of the noise is
determined by the relation: T ¼ @

2ð4mKB�Þ�1. The inte-
gral term of Eq. (2), which involves the whole past history
of the system, accounts for the non-Markovian behavior of
the dynamics:Dðt; sÞ is the time correlation function of the
noise, and �

�ws
denotes a functional derivative with respect

to ws.
Equation (2) plays a central role because it reproduces

all previous models, under the appropriate limits. When
Dðt; sÞ ! �ðt� sÞ, it reduces to the Markovian dissipative
model analyzed in [21]. When � ! 0, it reproduces the
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nondissipative and non-Markovian model presented in
[11,23]; when both limits are taken, it reduces to Eq. (1).

We succeeded in finding the general solution of Eq. (2),
for a harmonic oscillator [24], which we will describe here
below. Taking into account that, only for equations contain-
ing terms which are most quadratic in p and q, a general
method for finding the solutions is known, our equation
represents themost general equation that can be analytically
solved (modulo physically unimportant terms). This
matches with the fact that, from the physical point of
view, the model represents an arrival point, since it involves
both a non-Markovian and a dissipative noise. Note that the
model is similar to that of Hu, Paz, and Zhang, describing
non-Markovian quantum Brownian motion [8].

Solution.—The solution of Eq. (2) is given in terms of its
Green’s function Gðx; t; x0; 0Þ. In [25], it has been shown
how Gðx; t; x0; 0Þ can be written via the path integral for-
malism as follows:

Gðx; t; x0; 0Þ ¼
Z qðtÞ¼x

qð0Þ¼x0

D½q�eS½q�; (3)

where S½q� is a nonstandard action. For our model, it takes
the expression

S½q� ¼
Z t

0
ds

i
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with�2 ¼ !2 � �2�2, where! is the proper frequency of
the oscillator, and

As ¼ i@
ffiffiffiffi
�

p
ws þm�3=2�2ws

þ 2m�3=2�2
Z s

0
drDðr; sÞwr; (5)

Bðr; sÞ ¼ ð2m�2�2 þ 2i@�ÞDðr; sÞ
þ 4m�2�2

Z r

0
dr0Dðr; r0ÞDðs; r0Þ: (6)

An important issue here arises. Since S½q� is time-non-
local, the standard Lagrange formalism cannot be applied;
therefore, we resorted to a time-non-local variational for-
malism in [26]. The path integration in Eq. (4) was per-
formed using the midpoint formulation of the Feynman
polygonal approach [27]. The calculation is long and is
duly reported in [24]; here, we present only the final solu-
tion, which is an exact result. The Green’s function reads

Gðx; t; x0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2i�@tuðtÞ
s
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2
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2 þBtx0x
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where uðtÞ is a suitably defined function, unimportant for

the subsequent analysis, ~At ¼ �k½ _gtðtÞ � ���, k ¼ im
2@ ,
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where the differentiation is always done with respect to the
variable between parentheses. Defining the following
integro-differential operator,

I½eðsÞ�: ¼ m
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� 1
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one can prove that fðsÞ, gðsÞ, and hðsÞ solve the following
integro-differential equations:

I½fðsÞ� ¼ m��Dð0; sÞ; I½gðsÞ� ¼ 0; (13)

I½hðsÞ� ¼ m
ffiffiffiffi
�

p
�

2
_wðsÞ � AðsÞ

2
; (14)

with suitable boundary conditions [24].
The Green’s function (7) has some important features.

The first one is that it has a Gaussian structure. This
implies, first of all, that Gaussian states evolve into
Gaussian states. It implies also that the density matrix
has a Gaussian structure because it is the average (an
integral), with respect to a Gaussian noise, of states which
evolve under a Gaussian-preserving dynamics. A second

property is that the coefficients ~A, A, and B are deter-
ministic, while only C, D, and E depend on the noise wt

and thus evolve stochastically. The fact that the first three
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coefficients do not depend on the noise wt guarantees that
the spread of a wave function evolves deterministically in
time. From the point of view of collapse models, this is an
important property because it guarantees that any wave
function collapses in space. Finally, one can check that, as
expected, in the limit � ! 0, the solution of the non-
Markovian model is reproduced [11], while, in the limit
Dðt; sÞ ! �ðt� sÞ, one recovers the Markovian dissipative
model [21]. Considering both limits, one obtains the
Green’s function of Eq. (1). It is worthwhile stressing
that the proof of all these properties relies on the fact that
Eqs. (7)–(14) represent the analytical solution of Eq. (2).

The explicit expression of the Green’s function depends
on the solution of the three integro-differential equations
(13) and (14). These equations can be exactly solved only
for some correlation functions Dðt; sÞ. In order to give a
quantitative example of the features of the model, we have
solved Eqs. (13) and (14) for the exponential correlation
function and have studied the behavior of the spread of
Gaussian wave functions.

Exponential correlation function: Wave function for a
free particle.—Let us consider an exponential correlation
function

Dðt; sÞ ¼ ð�=2Þe��jt�sj; (15)

which, besides allowing for an explicit solution of the
equations, also represents a good physical example of a
correlation function with a finite correlation time, given by
��1. Using Eq. (15), one can show that the integro-
differential equations (13) and (14) can be transformed
into fourth-order differential equations [28]. One can solve
these equations for a generic quadratic potential (in par-
ticular, the harmonic oscillator [24]). For simplicity, here
we consider a free particle, whose equation of fðsÞ reads

f
::::ðsÞ � ð�2 þ �2�2 � 2���Þ €fðsÞ

þ
�
4�2�2�2 þ 2i@��2

m

�
fðsÞ ¼ 0: (16)

The general solution is

ftðsÞ ¼
X2
k¼1

½ft;k sinh�ksþ gt;k cosh�ks�; (17)

where the coefficients ft;k and gt;k are determined by the

boundary conditions and �1 and �2 are the two roots of the
characteristic polynomial associated to Eq. (16):

�1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�� ��Þ2 � ��=2

q
; (18)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� ��Þ4 � 16�2�2�2 � 8i@��2

m

s
: (19)

Two of the four boundary conditions are ftð0Þ ¼ 1 and
ftðtÞ ¼ 1, while the other two can be determined using a
standard procedure explained in [23,28]:

€fð0Þ ¼ �2�2fð0Þ þ ���
Z t

0
dle��l _fðlÞ

þ
�
�2�2�þ i@��

m

�Z t

0
dle��lfðlÞ; (20)
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Z t
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�Z t

0
dle��ðt�lÞfðlÞ

� �2�2�

2

Z t

0
dle��ðtþlÞfðlÞ: (21)

These four boundary conditions allow us to determine the
exact form of the coefficients ft;k and gt;k; their expressions
are too long to bewritten here but can be easily worked out,
e.g., with MATHEMATICA�. The same procedure here de-
scribed can be applied also in order to find the analytic
expressions for gðsÞ and hðsÞ. All the details of the calcu-
lation are reported in [24].
Having found the explicit expression for every coeffi-

cient of the Green’s function (7), one can analyze the time
evolution of wave functions. Particularly interesting, and
easy to analyze, are Gaussian states, whose form—as
previously discussed—is preserved by the dynamics.
Accordingly, a wave function of the type

�tðxÞ ¼ exp½�	tx
2 þ 
txþ �t� (22)

is a solution of Eq. (2), and the coefficients 	t, 
t, and �t

evolve in time as follows:

	t ¼ ~At � B2
t

4ð	0 þAtÞ ;


t ¼ � Ct þ 
0

4ð	0 þAtÞ þDt;

�t ¼ �0 þ Et þ ðCt þ 
0Þ2
4ð	0 þAtÞ :

(23)

As anticipated, one can easily see that the evolution of the
spread both in position and in momentum is deterministic,

since the parameters ~A, A, and B do not depend on the
noise. In particular, we focus our attention on the behavior

of the spread in position: �ðtÞ ¼ 1=2
ffiffiffiffiffiffiffi
	R
t

p
(the apex R

denotes the real part) in the case of the exponential corre-
lation function (15).
Figure 1 shows the comparison of the evolution of the

spread according to the four versions of the model (white
[29], white dissipative [21], nonwhite [11], and nonwhite
dissipative). First of all, one can see that the behavior is
qualitatively the same for every model: the spread de-
creases in time, reaching an asymptotic finite value.
From the quantitative point of view, one can see that,
both in the non-Markovian (dot-dashed line) and in the
dissipative (dashed line) models, the shrinking of the wave
function is slower than in the white noise case (solid line).
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As a consequence, when these two effects are combined
(dotted line), the spread decreases even more slowly. This
is easy to understand. In the Markovian case, all frequen-
cies contribute to the collapse of the wave function, while,
in the non-Markovian case, the high-frequency compo-
nents are suppressed. This slows the collapse process.
Secondly, a finite-temperature noise is less energetic than
an infinite-temperature noise; therefore, in the dissipative
case, the collapse is slower than in the nondissipative case.

From the point of view of collapse models, an interesting
physical question is whether a field with ‘‘typical’’ cosmo-
logical values for the temperature (T ’ 2:73 K, that of the
cosmic microwave background radiation) and for the spec-
trum (cutoff at �� 1010–1011 Hz; that of the cosmic mi-
crowave background radiation, the relic neutrino
background, and the relic gravitational background) can
collapse the wave function efficiently. This question has
been answered positively in [30]: a noise with typical
cosmological features can collapse the wave function fast
enough to guarantee the emergence of classical properties
at the macroscopic level.

The authors acknowledge partial financial support from
MIUR (PRIN 2008), INFN, COST (MP1006), and the John
Templeton Foundation project ‘‘Quantum Physics and the
Nature of Reality.’’

*ferialdi@ts.infn.it
†bassi@ts.infn.it
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[25] L. Diósi and W. T. Strunz, Phys. Lett. A 235, 569 (1997).
[26] L. Ferialdi and A. Bassi, arXiv:1112.2523 [Europhys. Lett.

(to be published)].
[27] R. P. Feynman and A.R. Hibbs, Quantum Mechanics and

Path Integrals (McGraw-Hill, New York, 1965).
[28] A. D. Polyanin and A.V. Manzhirov, Handbook of Integral

Equations (Chapman and Hall, Boca Raton, FL, 2008).
[29] A. Bassi, J. Phys. A 38, 3173 (2005).
[30] A. Bassi, D.-A. Deckert, and L. Ferialdi, Europhys. Lett.

92, 50 006 (2010).
[31] L. A. Raviola, G.G. Carlo, and A.M. F. Rivas, Phys. Rev.

E 81, 047201 (2010).

Non-white dissipative

Non-white

White dissipative

White

50 000 100 000 150 000 200 000

t

1.5 10 15

1.6 10 15

1.7 10 15

1.8 10 15

1.9 10 15

2. 10 15

2.1 10 15

2.2 10 15

t

FIG. 1. Time evolution of the spread in position �ðtÞ of a
Gaussian wave function, in the case of an exponential correlation
function for the noise. The initial spread is �ð0Þ ¼ 1 m. The
other parameters have been chosen as follows: m ¼ 1 kg, � ¼
3� 1024 m�2 s�1, � ¼ 10�30 m2 (dissipative models), and � ¼
10�4 s�1 (nonwhite models). Time is measured in seconds,
distances in meters. For very small values of �ð0Þ, the wave
function spreads out instead of shrinking, reaching the asymp-
totic value displayed in the figure (see also [31]).
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