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A fundamental difficulty in demonstrating quantum state tomography is that the required resources

grow exponentially with the system size. For pure states and nearly pure states, the task of tomography can

be more efficient. We proposed two methods for state reconstruction, by (1) minimizing entropy and

(2) maximizing likelihood. The algorithm of compressed sampling is employed to solve the optimization

problem. Experiments are demonstrated considering 4-qubit photonic states. The results show that

(1) much fewer measurements than the standard tomography are sufficient to obtain high fidelity, and

(2) the method of maximizing likelihood is more accurate and noise robust than the original reconstruction

method of compressed sampling. Furthermore, the physical meaning of the methods of minimizing

entropy and maximizing likelihood is clear.
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Quantum state tomography and quantum process tomog-
raphy are essential tasks in physics, especially in quantum
information science [1]. Although standard tomography
methods have been developed and demonstrated for qubit
systems, there is a fundamental difficulty. That is, the
required resources grow exponentially with the dimension
of the state space. Considering a d-dimensioned system,
N ¼ d2 measurements are necessary for state tomography
and N ¼ d4 experimental configurations for process
tomography, with the standard method. Additionally, to
obtain high precision, each measurement has to be repeated
many times, sayM. So that N �M copies of such physical
states (the input states may be different for process tomog-
raphy) are necessary. Whereafter, postprocessing of large
data also consumes many resources. Recently, efficient
quantum tomography of multiqubit states and processes
has drawn a lot of interest [2–9].

Fortunately, we are often interested in states and pro-
cesses with special properties, such as pure states, ground
states of a local Hamiltonian, unitary transformations, etc.
Taking the properties of states and processes as prior
knowledge, some measurements might be unnecessary;
therefore, tomography in such special cases can be more
efficient. Considering the problem of state reconstruction
from measurements fewer than d2, the standard method
will not work anymore, since there might be many solu-
tions. In fact, prior knowledge of the considered states
and the measured data can be treated as constraints that
confine the density matrix within a certain ensemble. We
can select the closest one to the real state within such an
ensemble in an optimal way.

In this Letter, we proposed two methods for efficient
tomography of pure or nearly pure states, by minimizing
entropy or maximizing likelihood. The task of state recon-
struction turns out to be an optimization problem similar to

those problems solved via compressed sampling (CS)
[10–12], so we employ the algorithm of CS to solve the
optimization problem. Experiments and numerical simula-
tions are demonstrated on photonic states. By minimizing
entropy or maximizing likelihood, the density matrix can
be reconstructed with high fidelity from much fewer mea-
surements, compared to the standard tomography method.
Furthermore, the method of maximizing likelihood is more
accurate and robust under statistical noise; thus, the num-
ber of required copies for each measurement can also be
lower. Our approaches will be applicable for quantum
tomography of large-scale quantum states and quantum
processes. We also discuss the physical meaning of our
approaches, which will be helpful for understanding the
physics of CS.
CS provides methods for reconstructing a large-size

sparse signal from a significant smaller one with efficient
convex optimization algorithms. Sparsity here means that
the number of nonzero entries of the signal vector is very
small in a specified basis, and the measurements are linear
functions of its entries. From a small number of randomly
chosen measurements, the vector can be recovered with
high probability. This method has been experimentally
applied to ghost imaging [13–15], an efficient measure-
ment of quantum dynamics [7]. Quantum state tomography
for low-rank density matrices has also been discussed
[8,9]. Suppose the density matrix is sparse, or
it is close to a matrix of rank r, where r is very small,
OðrdÞ measurements could suffice for tomography on a
d-dimension system [8]. It can be reconstructed by solving
for � from the following convex optimization problem [8]:

mink�ktr; s:t: tr� ¼ 1; trðAi�Þ ¼ bi; (1)

where k � ktr ¼
P

jsj, with sj being the singular values of

the matrix, and Ai is a randomly chosen measurement
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operator, with bi being the corresponding measurement
result. The number of randomly chosen Ai is of the order
m ¼ OðrdÞ. Considering the influence of noise, the prob-
lem in Eq. (1) should be replaced with [8]

mink�ktr; s:t:
Xm

i¼1

½trðAi�Þ � bi�2 � "; (2)

with " being a positive parameter determined by estimating
errors of the experimental data.

However, the physics of compressed sampling, even the
physical meaning of the objective function employed in the
reconstruction algorithm of Eq. (2), is unclear. The recon-
structed matrix is confined within a convex set of the
density matrices by the constraint in Eq. (2) and the ob-
jective function offers a criterion on how to select the very
matrix, with its physical meaning unclear.

We propose two methods for state reconstruction, the
objective functions of which are physically meaningful.
Experimentally, all the statistical errors in measurements
can be treated as random decoherence noise which tends to
lead an expected state to appear less pure. Therefore, the
constraint in Eq. (2) spans a convex ensemble in which
the matrices are most likely not as pure as the real state. Or,
the entropy of most density matrices contained in the
ensemble are higher than the real state. Based on the prior
information that the considered states are of low entropy, it
is reasonable to find the one that is of lowest entropy and
take it as the solution. Therefore, we take the entropy of �
as an objective function of the optimization problem. That
is, modify Eq. (2) into the following

min�trð� log�Þ; s:t:
Xm

i¼1

½trðAi�Þ � bi�2 � ": (3)

Besides, the probability that the reconstructed density
matrix � could produce the measured data can be em-
ployed to qualify how good � is in relation to the experi-
mental data. The higher the probability is, the closer to the
real state is �. Therefore, such probability should be maxi-
mized, which is the main idea of maximum-likelihood
estimation. Under the assumption that the noise on the
measured counts has a Gaussian probability distribution,
the task of maximizing the likelihood turns into minimiz-
ing the following function [16]

fð�Þ ¼ M0

Xm

i¼1

½trðAi�Þ � bi�2
2 trðAi�Þ ; (4)

with M0 being the total number of copies used for each
measurement. Taking M0 as a constant, we get the follow-
ing minimization problem for state reconstruction

min
Xm

i¼1

½trðAi�Þ�bi�2
2trðAi�Þ ; s:t:�y¼�; ��0; tr�¼1:

(5)

The constraint here is introduced to ensure the recon-
structed � is Hermitian, non-negative, and normalized.
When using complete measurements, Eq. (5) turns out to
be the standard tomography via maximum-likelihood
estimation.
To validate our approaches, we perform an experimental

demonstration and numerical simulations. For comparison,
the original algorithm shown in Eq. (2) proposed in Ref [8]
is also implemented. The experiments are demonstrated by
estimating the density matrix of a photonic n-qubit system,
with n chosen to be 2, 3, 4. The experimental setup is
shown in Fig. 1. Two-photon polarization entangled states
created via spontaneous parametric down-conversion are
employed to prepare all the states. For 3- and 4-qubit
states, the techniques of one-photon two-qubit are em-
ployed for the states’ preparation and measurements
[3,17]. The polarization and paths of the photon that go
through the polarization beam splitter (PBS in Fig. 1) are
encoded as the 1st and 2nd qubit, while those of the photon
that go through the beam splitter (BS in Fig. 1) are encoded
as the 3rd and 4th qubit. For comparison, we first per-
formed standard quantum state tomography. On each qubit,
each measurement is chosen from

�̂0 ¼ j0ih0j; �̂1 ¼ j1ih1j
�̂2 ¼ jþihþj; �̂3 ¼ j þ iihþij;

(6)

where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
and j � ii ¼ ðj0i � ij1iÞ= ffiffiffi

2
p

.

For each n-qubit state, the complete set fAi ¼ �n
j¼1�̂

ðjÞ
kj
g of

all the 4n combinations of those four observables, with �̂ðjÞ
kj

being one of the four measurements on the jth qubit, is
measured. Two Sagnac interferometers with high visibility
and stability are constructed to perform measurements on
the superposition state (namely, �̂2 and �̂3) of the path
qubit. For the convenience of the experiments, the mea-
surements are replaced with modified Bell state measure-
ments [3] on the single-photon two-qubit state encoded in

FIG. 1 (color online). Setup for the preparation and measure-
ments of two-photon four-qubit states. Two-qubit states are
prepared on the polarization states of twin photons created via
spontaneous parametric down-conversion. Two interferometers
are employed for preparing and measuring the path qubit. For
three-qubit states, one of the interferometers is removed.
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qubit 1 and 2, for those measurement operators containing
�̂2 or �̂3 on the 2nd qubit. Based on the measured data, the
density matrix �S of each state is reconstructed with the
standard method.

Then we implement the methods of reconstruction from
fewer measurements. For each state, m different Ais and
corresponding measurement results bis are randomly
chosen from the complete data set. The measurement error
bound " in Eq. (2) is chosen to be slightly larger thanP

m
i¼1 �

2
i , where �i is the standard deviation of bi. Then the

density matrix �ð2Þ
m is reconstructed by solving Eq. (2). The

density matrix reconstructed from the complete measure-

ment data (all the 4n measurements are used) �ð2Þ
C is also

calculated. Fidelity between �S and �ð2Þ
C , as well as the

fidelity between �ð2Þ
m and �ð2Þ

C are shown in Fig. 2 as

squares. From top to bottom, the results for 2-, 3-, and
4-qubit states are shown. The error bars are obtained by
solving Eq. (2) for 7 states and 10 different combinations
of m measurements for each state.

By solving Eq. (3) and Eq. (5) with randomly chosen m
measurements, the density matrices are also calculated.

Fidelity between matrix �ð3Þ
m (�ð5Þ

m ) reconstructed from m

measurements and �ð3Þ
C (�ð5Þ

C ) from 4n measurements are

shown in Fig. 2. The fidelity between �S and �ð3Þ
C (�ð5Þ

C ) is

also shown. In Fig. 2, the results of Eq. (3) are represented
as triangles and that of Eq. (5) as circles.
As shown in Fig. 2, the reconstructed density matrices

show high fidelities with the results of standard state
tomography. At the same time, results of each algorithm
show good consistency, and the results of three algorithms
agree well, especially for 2-qubit states. For 3- and 4-qubit
states, fidelities obtained are a little lower than that of
2-qubit. This is mainly caused by noise. On the one
hand, bi’s are calculated from coincidence counts. For
3- and 4-qubit states, the coincidence count rate gets lower
due to higher loss in the experiments; therefore, statistical
errors lead to higher relative errors. On the other hand, the
expected states are changed into mixed states due to the
phase errors in the interferometers. For each measurement
that contains �̂2 or �̂3 on the path qubit, the phase of
interferometers is set by observing the interference, the
precision of which is dependent on the count rate. When
the count rate decreases, the precision of the phase will also
decrease. These kinds of errors can be treated as system-
atical noise introducing decoherence to the expected states;
therefore, the rank of measured states gets higher, which
makes the number of required measurements become
larger for using compressed sampling.
To illustrate the performance of our methods for states of

different purities under different levels of noise, we do
some numerical simulations. The noiseless cases are first
considered. Density matrices of different rank r and purity
P are randomly produced for calculation. The results for
fr ¼ 1; P ¼ 1g, fr ¼ 2; P ¼ 0:6g and fr ¼ 3; P ¼ 0:38g
are shown in Fig. 3. For states of higher rank or lower
purity, more measurements are required to obtain a certain
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FIG. 2 (color online). Results of state tomography via com-
pressed sampling. From top to bottom, results for 2-, 3- and
4-qubit are shown. For m< 4n, fidelities between �m recon-
structed from m measurements and �C from complete measure-
ments are plotted. For m ¼ 4n, the dots show fidelities between
�C and �S calculated with the standard method. Circles represent
the results of solving Eq. (5), triangles for that of Eq. (3), and
squares for Eq. (2). Error bars are obtained by solving those
problems for 7 states and 10 different random chosen combina-
tions of m measurements for each state.
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FIG. 3 (color online). Numerical results of compressed sam-
pling based state tomography on 4-qubit states of rank r and
purity P, without noise. The fidelities of matrices reconstructed
from m measurements are shown. Circles represent results of
Eq. (5), triangles for Eq. (3), and squares for Eq. (2).
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level of fidelity. All the three algorithms can get high
fidelity given enough measurement data without noise.
About (3rd) measurements are sufficient for reconstructing
the density matrix with a fidelity higher than 0.9. For states
of low rank, the number of required measurements is much
lower than d2.

Then the cases with noise are considered. For each
4-qubit state �e, the measurement data fbig are produced
by calculating trð�eAiÞ then adding Gaussian statistical
noise on the coincidence count, with the standard deviation

of bi being �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0 trð�eAiÞ

p
=M0, where M0 is the total

number of copies used for each measurement. The results
of fr ¼ 2; P ¼ 0:98g, fr ¼ 2; P ¼ 0:6g and fr ¼ 3; P ¼
0:38g with M0 ¼ f7000; 1000; 500g are shown in Fig. 4.
For pure or nearly pure states, all three algorithms are not
very sensitive to statistical errors.	3rd measurements are
still sufficient for high fidelity reconstruction. When the
measured states are not so pure, the reconstruction
algorithms become more sensitive to statistical errors.
Especially, the fidelities of results from Eq. (3) become
lower for less pure states than that of the other two algo-
rithms, which imply that the algorithm of minimizing
entropy is less effective for less pure states.

The experimental and numerical results show that, for
pure states or nearly pure states, our methods can work

well and the number of required measurements N is of the
order OðrdÞ. 	3rd measurements are sufficient for recon-
structing the density matrix with a fidelity higher than 0.9.
Even when the number of copies M used for each mea-
surement is rather low, the reconstructed matrix can obtain
high fidelity. Therefore the total number of copies con-
sumed for state tomography can be greatly cut down. From
all these results, we find that the results of solving Eq. (5),
or maximizing likelihood based on CS, perform a little
better than the other two algorithms under the assumption
of Gaussian statistical noise. That is, the method of max-
imizing likelihood is more accurate and noise robust, thus
more practical than the other two.
Equations (3) and (5) show clear physical meaning. By

solving Eq. (3), the density matrix is reconstructed by
finding out the matrix of the lowest entropy, within an
ensemble for all the states in which the errors between
the expectation values and the measured data are lower
than an error bound defined by ", based on the prior
information that the measured state is of low entropy. By
solving Eq. (5), the density matrix is reconstructed by
finding out the matrix that could produce the measured
data with the highest probability, within the whole state
space. In addition, the results of Eq. (3) are very close to
that of Eq. (2) in most cases, which will be a hint for
understanding the physics of Eq. (2).
Our results and algorithms can be generalized into large-

scale systems, where the advantage of compressed sam-
pling will be more prominent and helpful. Based on our
results, efficient tomography of a multiqubit system be-
comes realizable, which will boost the development of
experimental research in quantum physics. Our discussions
about the physical meaning will be helpful for understand-
ing the physics of CS.
Since the property of the representation matrix for uni-

tary dynamics is very similar to that of pure state, tomog-
raphy via CS discussed here can also be applied to
tomography of quantum dynamics that can be expressed
as unitary operations or nearly unitary ones. Although the
reconstruction algorithms in Eqs. (3) and (5) have been
experimentally demonstrated, mathematical proof is still
expected. Further discussions on their application in prac-
tical experiments will also be helpful, such as the influence
of other kinds of noise, the method to determine the error
bound ", etc.
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