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A time of arrival operator across a square potential barrier is constructed. The expectation value of the

barrier time of arrival operator for a sufficiently localized incident wave packet is compared with the

expectation value of the free particle time of arrival operator for the same wave packet. The comparison

yields an expression for the expected traversal time across the barrier. It is shown that only the above

barrier components of the momentum distribution of the incident wave packet contribute to the barrier

traversal time, implying that below the barrier components are transmitted without delay. This is

consistent with the recent experiment in attosecond ionization in helium indicating that there is no real

tunneling delay time [P. Eckle et al., Science 322, 1525 (2008)].
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Diverse contrasting theories have been offered to com-
pute tunneling traversal time [1,2] since the problem was
raised in the early days of quantum mechanics [3]. This
diversity has instigated endless controversy on the nature
of quantum tunneling time [1,4]. But amidst the contro-
versy is the consensus that tunneling does not occur in-
stantaneously, so that there is presumably a measurable
delay in the transmission of the tunneling particle.
However, a recent landmark experiment by Keller’s group
in attosecond ionization in helium ‘‘give[s] a strong indi-
cation that there is no real tunneling delay time’’ [5], ruling
out in the process the predicted tunneling time due to
Keldysh [6]. The experiment then posits a challenge to
the presumed nonzero tunneling traversal time, imploring
for a new theoretical treatment consistent with zero delay
time. This Letter offers such a treatment.

In this Letter, we investigate quantum traversal time
across arbitrary continuous potential barriers under the
hypothesis that we can meaningfully construct a time of
arrival operator T corresponding to an arrival at some point
x in the configuration space for a given interaction potential
VðqÞ. Our theory models the situation where at time t ¼ 0 a
wave packet c ðqÞ is launched in the presence of VðqÞ
toward a detector located at x to indicate arrival of the
particle there.We hypothesize that the average time elapsed
between the launching of the wave packet and a successful
registration of the particle at the detector is given by the
expectation value hc jTjc i, where T is the time of arrival
(TOA) operator corresponding to VðqÞ. We will show that
only the above barrier components of the momentum dis-
tribution of the incident wave packet contribute to any
measurable barrier traversal time and that below the barrier
components are transmitted without delay.

Foremost, let us exemplify the measurements that serve
to define the barrier traversal time: A detector DT to
announce the arrival of a particle is located at the origin.
(The nature of the detector will generally depend on the
projectile; for example, for neutrons, the detector must

provide the necessary nuclear reaction to ‘‘turn’’ the neu-
tron into charge particles that will be detected directly by
means, say, of a scintillation detector.) A similar detector
DR is located at the far left of DT . A potential barrier VðqÞ
with length L is placed between DT and DR. A localized
wave packet c ðqÞ is prepared between DR and VðqÞ and
launched at t ¼ 0 towards the barrier. The time of arrival is
recorded when DT clicks; otherwise, no data are collected
when DR clicks. This is repeated a large number of times,
with c ðqÞ as the initial state for every repeat, and the
average time of arrival ��B at DT is computed. The same
experiment is performed without the barrier, and the aver-
age free time of arrival ��F at DT is computed from the new
time of arrival data. The expected traversal time across the
barrier is deduced from the difference �� ¼ ��F � ��B.
It is the objective of this Letter to obtain a theoretical

prediction for �� and from this quantity obtain the tunnel-
ing traversal time. The treatment starts from constructing
the TOA operator in the presence of the barrier, TB, and the
time of arrival operator in the absence of the barrier, TF.
The operator TF is the free TOA operator, which is the
quantization of the classical time of arrival [7–9]; the
operator TB is to be constructed here for the first time by
quantization, using the theory of quantum time of arrival in
the presence of an interaction potential we have developed
elsewhere [10,11]. We then make the identifications ��B ¼
hc jTBjc i and ��F ¼ hc jTFjc i. These identifications are
justified on the grounds that the above described experi-
ments reduce to simple classical time of flight measure-
ments when the wave packet is replaced by a classical
particle and that the expectation values hc jTBjc i and
hc jTFjc i give the correct classical values (where the
classical TOA exists) in the limit as @ approaches zero.
For the free particle case, this has been established in
Ref. [12], and, for the barrier case, it will be established
in the development to follow.
Despite earlier claims that the classical time of arrival

cannot be quantized in the presence of an interacting
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potential, it is shown in Ref. [10] that it can be quantized,
at least, for analytic potentials. In coordinate representa-
tion, the quantized TOA operator for arrival at the origin
is the integral operator

ðT0’ÞðqÞ ¼
Z 1

�1
�

i@
T0ðq; q0Þsgnðq� q0Þ’ðq0Þdq0; (1)

where sgnðxÞ is the sign function and

T0ðq; q0Þ ¼ 1

2

Z �

0
ds0F1

�
; 1;

�

2@2
�2fVð�Þ � VðsÞg

�
(2)

in which 0F1 is a specific hypergeometric function, � ¼
ðq� q0Þ, and� ¼ ðqþ q0Þ=2. Numerical simulations done
in Refs. [8,11] identify T0 as a first time of arrival operator.
First time of arrival distributions can be extracted from the
operator T0 by means of successive coarse grainings
[9,13]. Readers are referred to Refs. [13,14] for full ac-
counts of the theory of time of arrival operators. (See [15]
for a distinct treatment of the TOA problem in the interact-
ing case.)

Now the quantized free particle TOA operator for arrival
at the origin is obtained from Eq. (2) by substituting
VðqÞ ¼ 0. We obtain TFðq; q0Þ ¼ ðqþ q0Þ=4, substitution
of which back into Eq. (1) gives the free TOA operator.
This result can be reached by a direct symmetric quantiza-
tion of the classical free time of arrival t ¼ ��q=p.
Quantization yields TF ¼ �ð�=2Þðqp�1 þ p�1qÞ [7]. In
coordinate representation, TF is the integral operator
ðTFc ÞðqÞ ¼ R1

�1hqjTFjq0ic ðq0Þdq0, where the kernel is
given by hqjTFjq0i¼�ð�=2Þðqþa0Þð1=2�@ÞR1

�1p�1�
eiðq�q0Þp=@dp. Using the identity

R1
�1 x�1ei�xdx ¼

i�sgnð�Þ ([16], p. 360, no. 19) leads to Eq. (1) for the
free case.

Now Eq. (1) has been derived under the assumption that
the interaction potential is analytic. We assume for the
moment that it extends to piecewise continuous potential
by appropriate subdivision of the integral and apply it to a
square potential barrier to construct the corresponding time
of arrival operator. Let us place the barrier to the left of the
arrival point, which is the origin. With a < b < 0 the
potential is VðqÞ ¼ V0 > 0 for a < q < b and zero else-
where. We change variables from ðq; q0Þ to ð�; �Þ, where
� ¼ ðqþ q0Þ=2 and � ¼ ðq� q0Þ, so that T0ðq; q0Þ ¼
~T0ð�; �Þ. Then we can directly use Eq. (2) to obtain
~T0ð�; �Þ. In the � coordinate the potential becomes
Vð�Þ ¼ V0 > 0 for a < �< b and zero elsewhere.

We now obtain ~T0ð�; �Þ. For �> b we have Vð�Þ ¼ 0,
and in the entire region of integration from 0 to � we have
Vð�0Þ ¼ 0. Then Eq. (2) yields ~T0;1ð�; �Þ ¼ �

2 , for �> b.

For a � � � b we have Vð�Þ ¼ V0. We have to divide the
integration in two parts: b < �0 < 0, where Vð�0Þ ¼ 0,
and �< �0 < b, where Vð�0Þ ¼ V0. Then ~T0;2ð�; �Þ ¼
�
2 þ b

2 ½I0ð�0j�jÞ � 1� for a � � � b, where I0ðxÞ is a

modified Bessel function and �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�V0

p
=@. For �< a

we have VðqÞ ¼ 0. We have to divide the integration in

three parts: b < �0 < 0, where Vð�0Þ ¼ 0, a � � � b,
where Vð�0Þ ¼ V0, and �< 0, where Vð�0Þ ¼ 0. Then
~T0;3ð�; �Þ ¼ �

2 þ ða�bÞ
2 ½J0ð�0j�jÞ � 1� for �< a, where

J0ðxÞ is a Bessel function of the first kind.
To prove that Eq. (1) gives a quantization of the classical

time of arrival across the barrier, we now show that the
constructed TOA operator in the presence of the barrier
gives the correct classical limit. The limit is obtained by
taking the inverse Weyl-Wigner transform of the kernel
hqjT0jq0i, and it is given by t0¼

R1
�1hq0þv

2 jT0jq0�v
2i�

e�ip0v=@dv, where q0 and p0 are now the respective
classical position and momentum at t ¼ 0. With the

kernel hqjT0jq0i ¼ �
i@T0ðq; q0Þsgnðq� q0Þ, we have t0 ¼R1

�1 ~Tðq0; vÞsgnðvÞe�ip0v=@dv, where the integral is

understood in the distributional sense. We will need the
identity

R1
�1 vm�1sgnðvÞe�ixvdv ¼ 2ðm� 1Þ!i�mx�m

(the inverse Fourier transform of Ref. [16], p. 360,
no. 18) to obtain the classical limit.
For q0 > b the limit is obtained by substituting

~T0;1ðq0; vÞ for ~T0ðq0;vÞ in t0; the result is t0¼��q0=p0.

For a < q0 < b we use ~T0;2ðq0; vÞ and expand I0ð�vÞ in
power series. Integrating the resulting expression term by
term and simplifying yields t0¼��ðq0�bÞ=p0��b=

p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2�V0=p

2
0

q
provided 2�V0=p

2
0 < 1; the first term

is the traversal time from the b edge of the barrier to the
origin, and the second term is the traversal time on top of
the barrier. For q0 < a we use ~T0;3ðq0; vÞ and expand

J0ð�vÞ in power series. The same procedure leads to the

limit t0 ¼ ��ðqo þ LÞ=p0 þ�L=p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�V0=p

2
0

q
pro-

vided 2�V0=p
2
0 < 1; the first term is the traversal time

across the interaction free region, and the second term is
the traversal time across the barrier. Then TB reduces to the
correct classical TOA expression in the classical limit,
hence, a quantization of the classical TOA.
Another important property of TB is its conjugacy with

the free Hamiltonian HF inside and outside of the barrier.
That is, h�j½TF;HF�j’i ¼ i@h�j’i for all �ðqÞ and ’ðqÞ
with compact supports to the left of the barrier, similarly
to the right and inside of the barrier. This follows from
the fact that the T0;kðq; q0Þ’s satisfy the required partial

differential equation for a TOA operator to be conjugate
with its Hamiltonian [10]; that is, �@2qT0;kðq; q0Þ þ
@2q0T0;kðq; q0Þ ¼ 0 for all k ¼ 1; 2; 3. Then T0;3ðq; q0Þ gives
the TOA operator for a wave packet incident from the left
of the barrier.
Now the expected time of arrival for an initial incident

wave packet c ðqÞ for a TOA operator T is given by

hc jTjc i¼
Z 1

�1

Z 1

�1
�c ðqÞc ðq0Þ�

i@
Tðq;q0Þsgnðq�q0Þdq0dq:

(3)

Let the initial wave packet c ðqÞ be incident with the
momentum expectationvalue @k0 orwith the group velocity
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@k0=m. Such a wave packet can be written in the form
c ðqÞ¼’ðqÞeik0q, where ’ðqÞ satisfies

R1
�1 �’ðqÞ’0ðqÞ�

dq¼0. By changing variables to � ¼ ðq� q0Þ and � ¼
ðqþ q0Þ=2, the expectation value assumes the form
hc jTjc i ¼ Im��, where

�� ¼�2�

@

Z 1

0

Z 1

�1
~Tð�;�Þ �’

�
���

2

�
’

�
�þ�

2

�
ei�k0d�d�

(4)

It will be convenient for us to work with the complex-
expected TOA �� and related complex valued quantities
introduced below (indicated by an asterisk *), their imagi-
nary parts yielding their corresponding physical quantities.

We now assume that our incident wave packet is infi-
nitely differentiable and with support to the left of the
barrier. In the absence of the barrier, the complex-expected
TOA is given by

��F ¼ ��

@

Z 1

0

Z 1

�1
eik0� �’

�
�� �

2

�
’

�
�þ �

2

�
�d�d�; (5)

where we substituted the free kernel ~TFð�; �Þ ¼ �=2 back
into Eq. (4) to obtain this expression. In the presence of the
barrier, the complex-expected TOA is given by

��B¼��

@

Z 1

0

Z 1

�1
eik0� �’

�
���

2

�
’

�
�þ�

2

�
ð�þLÞd�d�

þ�L

@

Z 1

0

Z 1

�1
eik0� �’

�
���

2

�
�’

�
�þ�

2

�
J0ð��Þd�d�;

(6)

where the contribution comes from ~T0;3ð�; �Þ only because
the support of ’ðqÞ does not extend inside and to the right
of the barrier.

The directly measurable quantity of the theory is the
time of arrival difference

�� ¼ hc jTFjc i � hc jTBjc i: (7)

In terms of the complex quantities ��B and ��F, this differ-
ence reduces to �� ¼ Imð���Þ ¼ Imð��F � ��BÞ. Let

�ð�Þ ¼ R1
�1 �’ð�� �

2Þ’ð�þ �
2Þd�. Then we have ��� ¼

ðL=v0ÞQ� � ðL=v0ÞR�, where Q� ¼ k0
R1
0 eik0��ð�Þd�

and R� ¼ k0
R1
0 eik0��ð�ÞJ0ð��Þd� , or ��� ¼ ðL=v0Þ�

ðQ� � R�Þ. To understand the underlying physical contents
of the quantities ðL=v0ÞQ and ðL=v0ÞR, where Q ¼
ImðQ�Þ and R ¼ ImðR�Þ, we investigate their respective
classical limits by taking the high energy k0 ! 1 limit for
fixed �0, followed by the substitutions k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�E0

p
=@ and

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�V0

p
=@.

Since Q� is a Fourier integral with respect to the asymp-
totic parameter k0, it is straightforward to establish by
integration by parts the asymptotic relation

Q� � i
X1
n¼0

1

k2n0
�ðnÞ

1 � X1
n¼0

1

k2nþ1
0

�ðnÞ
2 ; k0 ! 1; (8)

where �ðnÞ
1 ¼ ð�1Þn�ð2nÞð0Þ ¼ R1

�1 j’ðnÞð�Þj2d� and

�ðnÞ
2 ¼ð�1Þn�ð2nþ1Þð0Þ¼R1

�1 �’ðnÞð�Þ’ðnþ1Þð�Þd�. Sub-
stituting k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�E0

p
=@ and taking the imaginary part

yield the asymptotic value

Q� X1
n¼0

@
2n

ð2�E0Þn �
ðnÞ
1 ; @ ! 0: (9)

The normalization condition
R1
�1 �’ð�Þ’ð�Þd� ¼ 1 gives

Q� 1 or ðL=v0ÞQ� ðL=v0Þ in the classical limit, which is
the classical traversal time of a free particle with velocity
v0 across the barrier length L. Hence the quantity �F ¼
ðL=v0ÞQ lends to the interpretation as the expected quan-
tum traversal time for the free particle across the barrier
length.
Now R� is likewise a Fourier integral with respect to k0,

so that its asymptotic expansion can also be found by
repeated integration by parts. The result is

R�� i
X1
j¼0

1

k2j0

Xj
m¼0

2j

2m

 !
1

22m
2m

m

 !
�2m
0 �ðj�mÞ

1

�X1
j¼0

1

k2jþ1
0

Xj
m¼0

1

22m
2jþ1

2m

 !
2m

m

 !
�2m
0 �ðj�mÞ

2 ; (10)

as k0 ! 1. Substituting �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�V0

p
=@ and k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi

2�E0

p
=@ back into (10), collecting equal powers of @,

and taking the imaginary part give

R� X1
m;j¼0

@
2j�ðjÞ

1

ð2�E0Þj22m
2jþ 2m

2m

� �
2m
m

� ��
V0

E0

�
m
; (11)

as @ ! 0.
Only the j ¼ 0 term in the first term survives in the

classical limit and is given by

R� X1
m¼0

1

22m
2m
m

� ��
V0

E0

�
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

E0 � V0

s
; (12)

which is just the ratio of the free velocity v0 and the
velocity on top of the barrier v0

0, i.e., R� v0=v
0
0 as

@ ! 0. Then ðL=v0ÞR� L=v0
0 in the classical limit, which

is the classical traversal time across the barrier. Hence the
quantity �B ¼ ðL=v0ÞR lends to the interpretation as the
quantum traversal time across the barrier. In analogy with
optics, the classical limit R� v0=v

0
0 identifies the quantity

R as the effective index of refraction of the barrier with
respect to the incident wave packet, R being the ratio of the
‘‘reference speed’’ v0 to the ‘‘phase speed’’ v0

0 in the

‘‘medium.’’
We now establish that the expected quantum traversal

time across the barrier comes from the above barrier com-
ponents of the momentum distribution. We rewrite the
index of refraction by introducing the Fourier transform

’ðqÞ ¼ ð2�Þ�1=2
R1
�1 �ð~kÞei~kqd~k back into the definition
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of �ð�Þ. Direct substitution yields �ð�Þ ¼R1
�1 j�ð~kÞj2ei� ~kd~k. We substitute this expression for

�ð�Þ back into R�, interchange the order of integrations,

and change variable to ~k ¼ k� k0 to arrive at the expres-
sion R� ¼ k0

R1
0 dkj�ðk� k0Þj2

R1
0 d�eik�J0ð�0�Þ. One

readily identifies �ðk� k0Þ as the Fourier transform of
the full incident wave function c ðqÞ ¼ eik0q’ðqÞ; that is,
~c ðkÞ ¼ ð2�Þ�1=2

R1
�1 e�ikqc ðqÞdq ¼ �ðk� k0Þ. Only

the imaginary part of the integral
R1
0 d�eik�J0ð�0�Þ is

relevant and is evaluated by using the integral identityR1
0 J0ðaxÞ sinðbxÞdx ¼ Hðb� aÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
([17], p. 718,

no. 7), where HðxÞ is the Heaviside step function. Then on
taking the imaginary part of R� we have

R ¼ k0
Z 1

�0

j ~c ðkÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

0

q dk� k0
Z 1

�0

j ~c ð�kÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

0

q dk: (13)

Clearly, Eq. (13) shows that only those components of
~c ðkÞ with jkj> �0 contribute to any measurable traversal
time across the barrier. When the support of the momentum
distribution of the incident wave packet has a correspond-
ing energy distribution that lies below the potential height,
the index of refraction is zero and the traversal time under
the barrier vanishes. This inevitably leads to the conclusion
that below the barrier energy components are transmitted
without delay across the barrier—that is, quantum tunnel-
ing, whenever it occurs, happens instantaneously. (This is
reminiscent of Ref. [18], where it was shown that it does
not make sense to ascribe a velocity to a tunneling
electron.)

Equation (13) delineates the contributions of the positive
and negative momentum components. For arrivals at the
transmission channel, only the positive components are
relevant. For this case the measurable traversal time is
given by

�trav ¼ L�

@

Z 1

�0

j ~c ðkÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

0

q dk; �0 > 0: (14)

Now @

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

0

q
=� is the velocity vðkÞ on top of the

barrier, so that L=vðkÞ is the traversal time �ðkÞ across
the barrier for a given k. Then Eq. (14) reduces toR1
�0
�ðkÞj ~c ðkÞj2dk, which means that �trav is the weighted

sum of all classical above barrier traversal times with

weights j ~c ðkÞj2.
Equation (14) can be written as an expectation value of a

traversal time operator by substituting the Fourier trans-

form ~c ðkÞ ¼ ð2�Þ�1=2
R1
�1 e�ikqc ðqÞdq. Reversing the

order of integrations yields the expression

�trav ¼ �L�

2

Z 1

�1

Z 1

�1
c �ðqÞY0ð�0jq� q0jÞc ðq0Þdq0dq;

(15)

where Y0ðxÞ is a Bessel function of the second kind;
Eq. (15) is obtained by using the known Fourier trans-

form
R1
�1e

ix�ðx2�1Þ	þdx¼��ð	þ1Þ ffiffiffiffi
�

p j�=2j�	�1=2�
Y�	�1=2ðj�jÞ for 	 � �1;�2; . . . ([16], p. 363, no. 41).
By inspection of Eq. (15), we find that �trav is the expec-
tation value of the operator Ttrav with kernel hqjTtravjq0i ¼
�ðL�=2ÞY0ð�0jq� q0jÞ in coordinate representation.
Since Eq. (14) follows from the assumption that the inci-
dent wave packet has support to the left of the barrier, the
kernel hqjTtravjq0i corresponds to ~T0;3.

The above conclusions hold in general. Let the initial
wave packet be incident upon an arbitrary potential barrier
V0ðqÞ in the interval ½a; b�, where V0ðqÞ is positive definite
and continuous in the entire barrier length. Again only the
piece of the kernel in the region �< a contributes in the
expected traversal time. Similar calculation yields
~Tð�; �Þ ¼ 1

2 ð�þ LÞ � L
2 Jð�Þ for �< a, where Jð�Þ ¼

1
L

R
b
a J0ðj�j�ðsÞÞds and �ðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�V0ðsÞ
p

=@. The continu-

ity of V0ðqÞ in the interval ½a; b� implies the existence of a
unique point s0 in ½a; b� such that Jð�Þ ¼ J0ðj�j�ðs0ÞÞ,
in accordance with the mean value theorem. Then the
barrier is equivalent to the square barrier with height �0 ¼
�ðs0Þ> 0.
Finally, while Keller’s experiment involves a time-

dependent potential barrier, the character of their experi-
ment reduces to the simple model of the present Letter: A
quantum particle is prepared in one side of a potential
barrier and is detected at the other side, and the time it
takes for the particle to tunnel through the barrier is mea-
sured. Since the experiment has been controlled to ensure
that the energy of the tunneling electron is well below the
potential barrier, their result of a zero delay time within
experimental accuracy is consistent with the main result of
this Letter that below the barrier energy components are
transmitted instantaneously.
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