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Using Brownian dynamics computer simulations, we show that a two-dimensional suspension of self-
propelled (active”) colloidal particles crystallizes at sufficiently high densities. Compared to the
equilibrium freezing of passive particles, the freezing density is both significantly shifted and depends
on the structural or dynamical criterion employed. In nonequilibrium the transition is accompanied by
pronounced structural heterogeneities. This leads to a transition region between liquid and solid in which
the suspension is globally ordered but unordered liquidlike ‘“bubbles’ still persist.
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Recently, the collective dynamics of self-propelled
(active”) particles has become a topic of intense research
[1,2] resulting in a wealth of new nonequilibrium phe-
nomena like swarming [3,4], clustering [5-7], and active
swirling [8]. These phenomena have been observed in
dense bacterial solutions [9], starling flocks [10], and in
artificial microswimmers [11]. Excellent model systems
for self-propelled particles are colloidal suspensions,
where the motility of colloidal particles can be achieved
and steered by magnetic beads acting as artificial flagella
[12], by catalytic reactions at Janus particles [13], or by
laser-heated metal-capped particles [14].

The purpose of the present Letter is to show that self-
motile interacting colloidal particles in two dimensions
still freeze into a crystalline lattice displaying long-ranged
orientational order despite the fact that energy is injected
incessantly. We explore the nature of this nonequilibrium
transition by Brownian dynamics computer simulations of
a Yukawa model of self-propelled particles. We use a
minimal model without explicit alignment of particle
orientations. In equilibrium, i.e., in the absence of self-
propagation, the freezing and melting of colloidal suspen-
sions is well understood [15]. But even for passive particles
it is known that freezing is seriously affected and changed
under nonequilibrium conditions, e.g., in a time-oscillatory
external force field [16] or in shear flow [17]. Recently it
has also been shown that active matter can reach steady
states with frozen fluctuations [18].

For self-propelled particles, we find that the freezing
transition is largely shifted relative to its equilibrium
location. This shift cannot be explained by a simple scaling
using the concept of an effective temperature [19,20] in
contrast to sedimentation profiles of suspensions [21] or
the long-time diffusion of single propelled particles
[22]. Rather, the transition points based on different
criteria for melting and freezing, which agree in
equilibrium, diverge. In particular, the dynamical
Lindemann-like melting [23,24] and freezing criteria
[25,26] define a transition region between liquid and solid
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characterized by inhomogeneities of the orientational order
parameter.

We study a suspension of N self-propelled particles
moving in two dimensions and immersed in a solvent.
Even though the particles are driven, we assume that the
solvent remains in equilibrium at the well-defined tempera-
ture 7. The overdamped motion of the ith particle is
described through

fi = _le + fei + gi’ (1)

The noise & models the stochastic interactions with the
solvent molecules. It has zero mean and correlations
(&(DET(1)) =26,;18(t — 1), where 1 is the identity
matrix. Throughout the Letter we employ dimensionless
quantities and measure energy in units of kg7, length in
units of p~!/2, and time in units of (pD,)~". Here, p is the
number density and D, is the bare diffusion coefficient.
Particles interact pairwise through the repulsive Yukawa
potential,
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with screening length A~!'. The dimensionless coupling
strength I' = V,,./p/kgT combines temperature and den-
sity into a single parameter, where V|, is the bare potential
strength. The total potential energy then becomes U =
Y.i<ju(lr; —r;]). In addition to the conservative force
due to U, a constant force f propels every particle in the
direction

— [ COse; . N — o
ei= () (@ig ) =2D,8,5(~ ). @
In the minimal model studied here we assume that these
particle orientations undergo free diffusion without explicit
alignment. Hence, the correlations (e; - e;) = 0 for i # j
vanish in contrast to, e.g., rods, which effectively align
due to volume exclusion [2]. For spherical particles
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with diameter o the rotational diffusion coefficient is
D r 3D0 / g 2.

We perform Brownian dynamics simulations for N =
1936 particles using periodic boundary conditions.
Commensurable box dimensions L,/L, =2/ V3 are
chosen such that the suspension can crystallize into the
hexagonal crystal without any defects. We fix the rotational
diffusion coefficient to D, = 3.5 and the inverse screening
length to A = 3.5, leaving I" and f as variable parameters.
The time step for updating particle positions is At = 1074,
while particle-particle interactions are cut off after an
interparticle distance of 7/A = 2.

We simulate cooling and melting runs for forces
0 = f = 15. For the cooling runs we use one long trajec-
tory. We start from a random initial configuration where
both positions and orientations are uniformly distributed.
After a sufficiently large relaxation time (¢ = 25) we col-
lect data for 500 time units. The coupling parameter I' is
then increased by 20 and the protocol of relaxation and
recording data is repeated until we reach the maximal I'.
The melting runs for each pair {I', f} are independent,
starting out of the perfect hexagonal crystal albeit with
random particle orientations. Again, we wait an adequate
amount of time before collecting data for 50 time units. For
both cooling and melting, we record data from 5 indepen-
dent runs for each {I", f}.

‘We monitor structural changes through the global bond-
orientational order parameter [27]
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where N (i) is the set of the six nearest neighbors of the ith
particle and 6;; is the angle between the bond vector
pointing from particle i to j and an arbitrary fixed axis.
This order parameter is practically zero in the disordered
phase whereas in a perfect crystal ¢ = 1. In Fig. 1(a) we

plot the ¢ values averaged over all runs for both the
cooling and the melting protocol. There is a clear transition
between a disordered liquid and an ordered crystalline
phase even for self-propelled particles (f > 0). In equilib-
rium (f = 0) the transition is rather abrupt. The order
parameter jumps to ¢4=0.45 upon ordering at I'§ =~ 240;
see also Ref. [28]. Although the structural ordering be-
comes more gradual for higher propelling forces f, we
keep this criterion and determine ' from the condition
¢ = 0.45 for both the melting and freezing transition. In
Fig. 1(a) we do not resolve a possible hexatic intermediate
phase [29]. However, we note that no hysteresis is observed
in agreement with a second-order transition scenario.

Cooling the suspension, a dynamical criterion for freez-
ing is given by the precipitous drop of the long-time
diffusion coefficient,

_ i L 2
D= ,lirg4;<|m"(t)| ), (5)

with Ar;(7) = r;(¢) — r;(0). In Fig. 1(b) we plot the diffu-
sion coefficient for different forces. The value I';, at which
the suspension freezes is estimated from the condition
D = 0.086 [25]. This gives an upper bound I' <I'}, to
the liquid region; see the phase diagram in Fig. 1(c).
Moreover, for not too large forces I, =1'g correlates
well with the position of the structural ordering as observed
in Fig. 1(a). Hence, this dynamical criterion for freezing
based on particle mobility extends only to weakly driven
suspensions of self-propelled particles. Note that at large
forces and small I', the diffusion coefficient D exceeds 1,
the diffusion coefficient of a free passive Brownian
particle.

Both the criterions for I' and I'}, are based on threshold
values motivated by the equilibrium behavior. Since for
self-propelled particles the ordering transition is “smeared
out,” we next consider a dynamical criterion for melting
starting in the solid state and decreasing I', which gives a
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FIG. 1 (color online). Cooling (solid lines) and melting curves (dashed lines) for (a) the orientational order parameter ¢ and (b) the
long-time diffusion coefficient D vs the potential strength I' for selected driving forces f. The crossings with the dashed horizontal
lines define the position of the structural transition I'§ (¢ = 0.45) and the dynamical freezing I';, (D = 0.086), respectively. (c) Phase
diagram in the f-I" plane. The symbols mark the numerically estimated dynamical freezing line I';, and melting line I'; (see main text
for definition). The thick dashed line indicates the structural transition I'y. Also plotted are the ¢ = 0.67 and ¢ = 0.8
“isostructure” lines along which ¢ is constant.
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lower bound to the solid region. In one of the first theories
for melting, Lindemann conjectured that melting is caused
by atom vibrations that start to interpenetrate [30]. In our
case, it is natural to consider the vibrational displacements
of particles with respect to their lattice position. The
Lindemann criterion then states that melting commences
once the vibrational displacements reach a certain fraction
of the lattice spacing. However, in two dimensions fluctua-
tions on long wavelengths eventually destroy long-ranged
positional order in the crystal [31]. The mean-squared
displacement, therefore, is not a good measure to distin-
guish the liquid from the crystal. Instead, one defines a
Lindemann-like parameter [23,24]

(|Ar; (1) — Ar;(1)]?)
242

yL(t) = (6)

from the neighbor-neighbor displacements. Here, i and j
denote two particles that are initially neighbors. The lattice
spacing of the hexagonal crystal is £ = 2!/2371/4 ~ 1.075.
In the liquid vy, (¢) diverges for long times without a
plateau, whereas in the solid one observes a well-defined
plateau with Lindemann parameter y;. Hence, we deter-
mine the melting point from the smallest value I"; for
which we still observe a plateau; see Fig. 2(a).

Using a simplified picture to describe the process of
melting, we assume that particles move independently
close to their lattice position. The linearized forces then
read —V,;U = —k(r; — r¥) with effective curvature k o« T'.
The initial positions r;(0) = r? correspond to lattice posi-
tions in the hexagonal crystal. A straightforward calcula-
tion of Eq. (6) in the limit r — oo yields

4 2f D,

In Fig. 2(b), the plateau value y; as a function of force is
plotted together with the prediction vy, (f, I';) from Eq. (7).
Both values show excellent agreement. For the plot we
have fixed the proportionality between k and I' such that
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FIG. 2 (color online). (a) Time dependence of the Lindemann
parameter [Eq. (6)] for f = 8 below and at the melting point
I'; =700. (b) The plateau values of the Lindemann parameter
v} both measured (closed symbols) and from Eq. (7) (open
symbols) as a function of applied force.

the values for f = 0 are equal. Moreover, 7y; (0) = 0.026
agrees well with previous experiments [24].

Above I' > T the suspension is crystalline, both with
respect to orientational bond order and vanishing relative
particle motion as indicated by a finite Lindemann parame-
ter [Eq. (6)]. While structural and dynamical criteria agree
in equilibrium the phase diagram Fig. 1(c) shows that in
nonequilibrium there is a transition region I, <I' <I7
between liquid and crystal, which widens for larger forces
f- This region of parameter space is characterized by a high
structural order and low but nonvanishing diffusion.
Moreover, the dynamical freezing and melting lines do
not follow the orientational order but are shifted to higher
I" at higher forces. This implies that at high propelling
speeds structural ordering occurs before dynamical freez-
ing. While an effective temperature could be defined indi-
vidually for each criterion, the resulting values as a
function of force clearly do not agree.

To gain further insight we define the order parameter

. 1
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per particle in order to effectively describe the local envi-
ronment of every particle [32]. The advantage of the
neighbor-shell averaging compared to |gg¢l? is that g
more sharply distinguishes liquidlike from ordered re-
gions. In Fig. 3 probability distributions of g4 for f = 0
and f = 8 are plotted. For the crystal (¢4 = 0.8) no dif-
ference between the driven and the undriven suspension is
discernible (see also the last row of Fig. 3). In the liquid
(g = 0), the driven suspension is somewhat less struc-
tured compared to equilibrium. This is caused by the larger
effective diffusion due to the propulsion. A large difference
can be seen in the distributions for suspensions with
e =045, i.e., in the transition regime. Here the driven
suspension is locally more ordered but with a long tail that
extends down to unordered particles. The spatial distribu-
tion of order and disorder corresponding to this ¢ for a
single snapshot is shown in the second row of Fig. 3. For
f = 8 the suspension is overall more ordered but also more
heterogeneous, i.e., small, well-separated liquid “‘bubbles”
remain. Interestingly, the (¢ = 0.67 isoline crosses the
melting line such that for f = 8 it is within the transition
region. Two snapshots for this case are depicted in the third
row of Fig. 3. Because of the crossing, the two forces now
also describe two different dynamic regimes: While diffu-
sion has effectively ceased in equilibrium, some particles
still move in the driven suspension.

In conclusion, we have shown by using Brownian
dynamics computer simulations that self-motile colloidal
particles crystallize at sufficiently high densities. As com-
pared to the equilibrium freezing of passive particles,
there is a significant shift in the freezing density respec-
tively temperature, and additional large structural fluctua-
tions appear, which are caused by the self-propulsion. In
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FIG. 3 (color online). Top: Probability distributions for gg
at f = 0 (solid lines) and f = 8 (dashed lines) for three different
global ¢ values. Bottom: Snapshots of particle configurations
for both the equilibrium (f = 0, left column) and driven (f = 8,
right column) suspension. The rows correspond to constant
global ¢ values: from top to bottom ¢ = 0(100, 100), 0.45
(240, 560), 0.67(360, 600), and 0.8(600, 760); cf. the phase
diagram in Fig. 1(c). Values for the coupling I' are given in
parenthesis for f =0 and f =8, respectively. Particles are
colored according to their g¢ value. While liquid and crystal
(top and bottom row) are indistinguishable, the transition region
(middle rows) is marked by heterogeneous structure.

principle, our predictions are verifiable in real-space ex-
periments on colloidal model swimmers on a (quasi) two-
dimensional substrate [13,14]. They might also be relevant
for freezing phenomena in living systems under extreme
conditions.

In future work, it would be interesting to generalize our
model to one which embodies an explicit swarming behav-
ior such as a self-propelled rod model [6]. Furthermore,
since equilibrium freezing is different in two and three
spatial dimensions, it would be very interesting to simulate
a corresponding three-dimensional model. Last but not
least, the influence of the self-motility of the glass transi-
tion has not yet been studied. Since glass formation com-
petes with crystallization and is typically accompanied
with dynamical heterogeneity [33-35], self-propulsion
may introduce an internal source of additional fluctuations
which can help to form amorphous structures provided the
density is large enough.
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