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The strong-leg S ¼ 1=2 Heisenberg spin ladder system ðC7H10NÞ2CuBr4 is investigated using density

matrix renormalization group calculations, inelastic neutron scattering, and bulk magnetothermodynamic

measurements. Measurements showed qualitative differences compared to the strong-rung case. A long-

lived two-triplon bound state is confirmed to persist across most of the Brillouin zone in a zero field. In

applied fields, in the Tomonaga-Luttinger spin-liquid phase, elementary excitations are attractive, rather

than repulsive. In the presence of weak interladder interactions, the strong-leg system is considerably

more prone to three-dimensional ordering.
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In quantum magnets, the interplay between exchange
and quantum fluctuations leads to a host of novel phases,
much richer than their classical counterparts. In particular,
correlations between the spins can be strongly suppressed
by quantum effects, leading to quantum spin-liquid phases
with properties quite different from those of any conven-
tional ferro- or antiferromagnet. Under magnetic fields,
these systems undergo quantum phase transitions that are
akin to Bose-Einstein condensation [1]. Among the spin
liquids, antiferromagnetic (AF) Heisenberg S ¼ 1=2 lad-
ders are the simplest and most extensively studied [2].
They combine the essence of quantum magnetism with
peculiar features that stem from their one-dimensional
nature [3]. Spin ladders have applications in such diverse
fields as novel superconductors [4], ultracold atoms [5],
quantum computing [6], and quark physics [7]. In applied
fields, the spin ladders demonstrate a variety of scaling
properties, characteristic of the physics of one-dimensional
interacting quantum particles, the so-called Tomonaga-
Luttinger liquids (TLL). Understanding which key pa-
rameters of the actual spin Hamiltonian control these
universal features is a formidable challenge that requires
novel experimental and theoretical approaches.

In recent years, a general theory of weakly coupled
ladders under strong magnetic fields has emerged [8].
Considerable experimental progress in understanding
strong-rung spin ladders was made through the study
of the compounds ðCH3Þ2CHNH3CuCl3 [9,10] and
ðC5H12NÞ2CuBr4 [11–16]. Particular attention was given
to the field-induced quantum phase transitions
[10,11,13,14] and the properties of the TLL critical phase
at intermediate fields [13,15].

In the case of the strong-rung ladder, the spin gap in the
absence of a magnetic field is already present on each rung,
protecting the spin-liquid state from the leg exchange. A
more subtle limit is provided by the strong-leg (or weak-
rung) ladder. In that case, the existence of a spin-liquid

state is far from obvious and results [2] from an Haldane
gap mechanism [17]. This leads to some similarities be-
tween the two limits but of course also to important
differences, in terms of the origin of the spin gap, the
excitation spectrum, and the TLL mapping. On the experi-
mental side, this interesting problem remained elusive,
since only few studies are available.
In this Letter, we report both experimental and theoreti-

cal studies of the prototypical strong-leg spin ladder
material ðC7H10NÞ2CuBr4 (abbreviated DIMPY) [18,19].
We determine its thermodynamic properties and the neu-
tron scattering spectrum, and show how to use these data to
determine the TLL parameters. One central achievement
is a remarkable quantitative agreement between time-
dependent density matrix renormalization group
(DMRG) calculations and the experimental results. By
fitting the initial measured triplon dispersion to the model
Hamiltonian, we quantitatively account for all of the
subsequently studied properties.
The magnetic properties of DIMPY originate from lad-

ders formed by S ¼ 1=2 Cu2þ ions that run along the a axis
of the monoclinic crystal structure [20]. We model this
compound by the AF Heisenberg two-leg spin ladder
Hamiltonian

H ¼ Jleg
X

l;j

Sl;j � Slþ1;j þ Jrung
X

l

Sl;1 � Sl;2

� g�BH
X

l;j

Szl;j:

Here, Jleg and Jrung are the couplings along the leg and

rung, respectively; g�BH is the uniform Zeeman field; and
Sl;j are the spin operators acting on site l of the leg j ¼ 1; 2

of the ladder. At H ¼ 0, the ground state of DIMPY is a
nonmagnetic spin singlet separated from the lowest-energy
triplet excited states by an energy gap of � ¼ 0:36 meV
[18,19]. Previous studies suggested that the application
of a magnetic field at T ! 0 leads to a quantum phase
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transition to the TLL state at Hc1 ¼ 2:85 T [18]. Inelastic
neutron scattering measurements of the dispersion relation
for triplon excitations yielded an estimate of the ratio of
exchange constants as Jleg=Jrung � 2:2, through a compari-

son with theoretical results obtained with the perturbative
continuous unitary transformations calculations method
[18]. A more detailed measurement over the whole
Brillouin zone confirmed that the spin Hamiltonian is
symmetric with respect to leg permutation [19]. This fea-
ture allows one to conveniently describe the spin dynamics
in terms of separate antisymmetric (leg-odd ‘‘�’’) and
symmetric (leg-even ‘‘þ’’) structure factors

S ð�Þðq;!Þ / X

�

jh�jS�ðqÞj0ij2�ð!þ E0 � E�Þ;

respectively. Here, j0i denotes the ground state of H with
energy E0, S�ðqÞ ¼

P
le

�iqlaðSl;1 � Sl;2Þ, a is the lattice

constant, and
P

� is the sum over all eigenstates j�i of H
with energy E�. The two channels can be independently
probed by inelastic neutron scattering experiments.

To validate the spin Hamiltonian and to obtain a more
accurate estimate of the Jleg=Jrung ratio, we fit the experi-

mental results of Ref. [19] for the full single-triplon dis-

persion present in Sð�Þðq;!Þ with quasiexact numerical
results adjusting both Jleg and Jrung. The calculations were

performed using the time-dependent DMRG method
[21,22], on a ladder consisting of 200 coupled dimers,
while assuring convergence by keeping a few hundred
DMRG states. An almost perfect agreement with the
experiment is obtained over the whole Brillouin zone
(BZ) with Jleg ¼ 1:42ð6Þ meV and Jrung ¼ 0:82ð2Þ meV,

shown in Fig. 1(a) [23]. The excellent agreement with data
validates thatH is a faithful description of the system and
that additional terms (anisotropies, Dzialoshinski-Moryia,
etc.) if present are extremely small. We obtain Jleg=Jrung ¼
1:72ð6Þ for DIMPY, which is notably less than the value
quoted in Ref. [18]. The main difference occurs in Jleg, and

we attribute this difference to the approximation within the
perturbative continuous unitary transformations calcula-
tions method [18] and to the improved fitting over the
whole BZ in our case.

The obtained exchange constants were used to calculate

the symmetric structure factor SðþÞðq;!Þ. In the strong-
rung limit, these excitations are attributed to multiparticle
states with an even number of triplons [24,25]. Assuming
no interaction between excitations, one expects to see a
diffuse continuum of two-triplon scattering with a maxi-
mum of the lower boundary at the center of the BZ ka ¼ �.
Interactions lead to two-triplon bound states [26]. In the
strong-rung limit, these only exist below the continuum in
a narrow range close to the BZ center. The actual calcu-
lated symmetric spectrum for DIMPY is shown in Fig. 1(b)
and deviates from this simplistic picture. Similarly to the
isotropic point (Jleg ¼ Jrung) [27], the continuum has a

local minimum in the center of the BZ, where most of the
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FIG. 1 (color). Dynamic spin structure factor of DIMPY.
(a) Antisymmetric channel. The false-color plot shows the
DMRG result. (The oscillations are numerical artefacts, and
the time step used is of the order of 0:1J?.) The symbols are
experimental data for single-triplon dispersion from Ref. [19].
(b) Symmetric channel. The false-color plot is the same as
above. The symbols are positions of peaks in inelastic neutron
scattering scans shown in (c)–(e) (symbols). The white dashed
lines in (b) are the limits of the two-triplon continuum. The solid
red line in (c)–(e) is the DMRG result scaled by an arbitrary
factor and convolved with the resolution function of the three-
axis spectrometer [35]. The green arrow in (c)–(e) is the lower
edge of the two-triplon continuum.
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spectral weight is concentrated. A characteristic ‘‘hat’’ on
top of the continuum can be identified. However, the most
prominent feature is a long-lived excitation below the
boundary of the continuum, stable across most of the BZ,
at 0:8� 2� * ka * 0:2� 2�. Numerically, integrating
the singular and nonsingular parts of the dynamic structure
factor up to 5 meV, we estimate that 56% of the spectral
weight is contained in single-triplon excitations and 14%
in two-triplon bound states.

The theoretical results were tested in inelastic neutron
experiments at the TASP three-axis spectrometer at the
Paul Scherrer Institute, using the same deuterated single
crystal samples and experimental conditions as in
Ref. [19]. Typical constant-q scans measured at T ¼
1:5 K at several wave vectors that correspond to

SðþÞðq;!Þ are shown in Figs. 1(c)–1(e) in symbols [28].
The only adjustable parameter is an overall scale factor.
The quantitative agreement between theory and experi-
ment is a spectacular validation of our approach. In
particular, it is possible to experimentally separate the
bound state from the continuum. This is more delicate in
strongly dimerized compounds [29] or those with large
energy scales [25].

The fitted Hamiltonian also allows us to interpret bulk
magnetometric experiments. The measured magnetization
curve [30], for a field applied along the a axis at T ¼
500 mK, is in excellent agreement with DMRG results, as
shown in Fig. 2. The small discrepancy in the very vicinity
ofHc1 is due to finite-T effects. The onset of magnetization

signals the gapless TLL regime. Here, the low-frequency
long wavelength correlation functions and other properties
are expected to have a universal form determined by the so-
called Luttinger parameter K, which defines the powers of
the algebraic correlations, and the velocity u of the linear
excitation spectrum.

In DIMPY, these field dependencies are markedly differ-
ent from those in the strong-coupling limit, as shown in

Figs. 3(a) and 3(b). In the latter case, K decreases beyond
Hc1 and returns to unity at saturation Hc2. Throughout the
TLL phase, K < 1, and the elementary spin excitations
(spinons) are repulsive. Not so in the strong-leg ladder.
For DIMPY, we see that K increases beyond Hc1 and
remains greater than unity at higher fields. This signifies
an attractive interaction between spinons [8]. In the direct
proximity of saturation at Hc2, K � 1, which corresponds
to noninteracting spinons. The velocity u in DIMPY also
behaves quite differently compared to the strong-rung
coupling case, showing a strongly asymmetric behavior.
This behavior of the velocity will have a strong influence
on numerous quantities defined by low-energy excitations,
such as the low-energy continuum in the gapless phase. As
a consistency check, we estimated the velocity additionally
from the specific heat measurements discussed below,

using the relation CðTÞ ¼ �kBT
6u , where C is normalized

per spin [31]. This estimate [symbols in Fig. 3(b)] is in
good agreement with our calculated velocity, in particular,
considering that the determination by the specific heat can
be inaccurate, as detailed in [32].
TLL physics is endemic to one dimension. Ironically,

one of the most accurate ways to probe its properties is to
study the quasi-1D case of weakly coupled ladders.
Interladder interactions result in three-dimensional long-
range AF ordering at a finite temperature. Assuming un-
frustrated and weak couplings, the problem can be treated
in the framework of the chain mean field (MF) theory [33].
The characteristics of the ordered state are entirely defined
by the TLL properties of isolated ladders, with only one
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FIG. 2 (color online). Magnetization induced in DIMPY as a
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FIG. 3 (color online). TLL parameters as a function of field-
induced magnetization. The DMRG results determined follow-
ing Refs. [32,36] for DIMPY with Jleg=Jrung ¼ 1:72ð6Þ are

shown as solid lines and the strong-rung coupling limit as dashed
lines [32]. The symbols in (b) are extracted from the experimen-
tal heat capacity measurement.
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added parameter: the effective interladder coupling con-
stant nJ0MF. (The form suggests equal coupling strength
J0MF to n ladders.) In particular, the field dependencies
of the ordering temperature Tc are given by Eq. (2) of
Ref. [13]. In this formula, the quantity Ax is the amplitude
of AF correlations in isolated chains [Fig. 3(c)]. Combined
with the field dependence of hSzi, this gives us the field-
temperature phase boundary, shown as a solid line in Fig. 4.

DIMPY was previously hailed as an almost perfect 1D
system that even at H >Hc1 remains disordered [18]. In
fact, more careful specific heat measurements reveal a
weak but well-defined lambda anomaly that appears for
H >Hc1. This can be interpreted as the onset of 3D long-
range order. Typical spin specific heat data collected in
protonated samples for H k b are shown in Fig. 4 [34]. At
each field, the putative ordering temperature Tc was iden-
tified with the peak position. It is plotted against field in
symbols in Fig. 4 (right axis). The experimentally mea-
sured phase boundary is in excellent agreement with the
chain MF prediction, assuming an unfrustrated interladder
coupling of nJ0MF ¼ 6:3 �eV. This agreement lends cre-
dence that the singularity seen in specific heat is indeed
associated with the 3D ordering.

As MF neglects the quantum fluctuations between the
ladders, J0MF may underestimate the real coupling J0.
This said, given almost the same interladder MF coupling
as in the strong-rung material ðC5H12NÞ2CuBr4 (nJ0MF ¼
6:9 �eV [13]), the ordering temperature is considerably
enhanced in the strong-leg case of DIMPY. This effect is
principally due to the rapid growth of transverse correla-
tions, as defined by Ax, and their slow falloff due to the
large K, showing again the differences between the strong-
leg and strong-rung limits.

To summarize, this Letter vividly illustrates that, for
low-dimensional spin systems, the advances in numerical

and experimental methods now make it possible to blend
first principles calculations with the data analysis for
neutron scattering and thermodynamic experiments into a
single self-consistent procedure.
This work is partially supported by the Swiss National

Fund under MaNEP and Division II. We thank T. Yankova
for her involvement in the synthesis of DIMPY samples.
Note added.—During the final stage of this work, we

became aware of the study by Ninios et al. [37], which
contains experimental data similar to those shown in Fig. 4.
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Büchner, Nature Phys. 6, 50 (2009).

[8] T. Giamarchi and A.M. Tsvelik, Phys. Rev. B 59, 11 398
(1999).

[9] T. Masuda, A. Zheludev, H. Manaka, L.-P. Regnault, J.-H.
Chung, and Y. Qiu, Phys. Rev. Lett. 96, 047210 (2006).

[10] V. O. Garlea et al., Phys. Rev. Lett. 98, 167202 (2007); A.
Zheludev et al., Phys. Rev. B 76, 054450 (2007).

[11] T. Lorenz, O. Heyer, M. Garst, F. Anfuso, A. Rosch, Ch.
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[13] M. Klanjšek et al., Phys. Rev. Lett. 101, 137207 (2008).
[14] B. Thielemann et al., Phys. Rev. B 79, 020408 (2009).
[15] B. Thielemann et al., Phys. Rev. Lett. 102, 107204 (2009).
[16] A. T. Savici, G. E. Granroth, C. L. Broholm, D.M.

Pajerowski, C.M. Brown, D. R. Talham, M.W. Meisel,
K. P. Schmidt, G. S. Uhrig, and S. E. Nagler, Phys. Rev. B
80, 094411 (2009).

[17] F. D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[18] T. Hong et al., Phys. Rev. Lett. 105, 137207 (2010).
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