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We show that the influence of spin-orbit (SO) coupling on the weak-localization effect for electrons in
graphene depends on the lack or presence of z — —z symmetry in the system. While, for z — —z
asymmetric SO coupling, disordered graphene should display a weak antilocalization behavior at lowest
temperature, z — —z symmetric coupling leads to an effective saturation of decoherence time which can
be partially lifted by an in-plane magnetic field, thus tending to restore the weak-localization effect.
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The effect of spin-orbit (SO) coupling in graphene rep-
resents an example of a stimulating theoretical study that
remains difficult to detect experimentally. The form of
intrinsic SO coupling in the graphene band structure, sug-
gested by Kane and Mele [1], has fueled the theory of Z,
topological insulators, but its strength is too weak for
detection by conventional spectroscopic methods [1-5].
Here, we show how the presence of SO coupling in dis-
ordered graphene could be manifested in quantum trans-
port measurements. Specifically for graphene, the presence
of SO coupling may not necessarily lead to antilocalization
behavior known in semiconductors and metals [6], and this
reflects the presence or lack of z — —z symmetry in the
source or microscopic origin of SO coupling.

In general, weak localization is very sensitive to sym-
metry breaking in the electronic system or to scattering
involving electron spin, since it is formed by electrons
propagating along long diffusive trajectories [6—16]. The
typical behavior of electrons in metals with strong SO
coupling results in a pronounced weak antilocalization
effect manifested by positive magnetoresistance, in con-
trast to simple metals and semiconductors where the weak-
localization magnetoresistance caused by the interference
correction to conductivity is negative. In metallic gra-
phene, if the influence of SO coupling may be neglected,
then the presence of intervalley scattering results in con-
ventional weak localization [8—15]. Then, at the lowest
temperatures, we find that SO interaction leads to weak
antilocalization, as in the typical case, but only if graphene
has broken z — —z symmetry, due to a substrate or depos-
its. In contrast, for a z — —z symmetric system, SO
coupling leads only to a saturation in the size of the
weak-localization correction rather than antilocalization,
which can be taken for a saturation of 7,(T) as T — 0. We
analyze the influence of an in-plane magnetic field on the
interference correction to conductivity for both z — —z
symmetric and antisymmetric SO-coupling scenarios and
find that it lifts the aforementioned saturation of 7,. Note
that a z — —z symmetric SO-coupling term in graphene
may be promoted even by sp? hybridization of asymmet-
rically deposited impurities [17].
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The breaking of z — —z symmetry in pristine graphene
is usually associated with the addition of a Bychkov-
Rashba term hgg [1-3,5,16-19] to the intrinsic SO cou-
pling Ay [1,3,4,16] in the graphene Hamiltonian:

FI = UEp + };KM + };BR + U + Vsym + Vasy + /.,LBSB”,
hem =AS,s,,  hgr= w(Z sy — Zy8y). (D
The last term in A accounts for Zeeman splitting due to the
in-plane magnetic field B = €B)}, and the terms

U = Moi + Z ua,lzuAl: (2)
a,l=x,y,z
Vsym = Sz[ z aa,zza + Z BI,ZAI]’ (3)
a=x,y,z I=x,y,z

Viy= o] T awSa+

j=xy a=xy,z

> sk @

I=x,y,z2

describe three types of disorder on the honeycomb lattice:
spin-independent perturbations, SO coupling with z — —z
symmetric perturbations, and z — —z asymmetric pertur-
bations, respectively. Here, we use a symmetry-based
approach to determine how electronic spin may be com-
bined with lattice and valley degrees of freedom. We focus
on the region near the Fermi level which lies in the vicinity
of two inequivalent corners of the Brillouin zone, known as
valleys, with wave vectors K. = *=(47/3a, 0), where a is
the lattice constant, and the momentum measured from
the center of a valley is p = 7k — 7K. The Hamiltonian
(1) operates in a space of eight-component Bloch functions
O = [bk, ap Px,.81 Pk Bp PK_Ap Pr.ab PK. B
dK_B) Px_.ay] consisting of two valleys K, /K_, two
lattice sites A/B, and two spin components | / | . We use
three sets of Pauli matrices [11,12] to describe spin § =

($y, 8y, 5.), sublattice “‘isospin” S = (2. 2, 2,), and val-
ley “pseudospin” A = (A,, A,, A,) [20]. The matrices 5,

3, and A all change sign upon time inversion so that their
products are time-inversion symmetric, and 2,5, and s; A,
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may be used as a basis for a phenomenological description
of static disorder leading to SO scattering.
The results of this symmetry-based approach are sum-

marized in Table I, which shows how §, E and A may be
combined to form irreducible representations of the planar
group C¢ [21], which combines the point group Cg, of
strictly two-dimensional graphene with primitive transla-
tions, as appropriate for the description of two valleys K.

Matrices 3 and A are confined to the two-dimensional
plane of graphene, and their behavior under symmetry
operations is impervious to the third spatial dimension.
Thus, they are invariant under mirror reflection in the
graphene plane so that, in the absence of spin, they only
appear in the representations that are z — —z symmetric.
The presence of spin, however, introduces a pseudovector
that lies in three-dimensional space: s, is even under z —
—z reflection, but in-plane components s, and s, are odd.
Thus, SO terms containing s, appear in z — —z symmetric
representations, and terms containing s, and s, appear in
7 — —z asymmetric representations.

In Table I, 3 s, is an invariant of the point group of
graphene representing intrinsic Kane-Mele SO coupling
hen [1,3.4,16] and 2,5, — 2,5, describes the Bychkov-
Rashba term ﬁBR [1-3,5,16—-19], which assumes the exis-

tence of a transverse field €, breaking z — —z symmetry.
The entries in Table I take into account possible SO
scattering mechanisms due to defects in graphene: Vi,

includes terms proportional to s, and Vg, includes s, and

sy. The term U, Eq. (2), describes disorder decoupled from

the spin degree of freedom: u,(r)I describing the influence
of remote charges, u_.(r)%_A, describing different on-site
energies of the A/B sublattices, and u, (r)%, A, and
uy . (r)2, A, accounting for fluctuations of A/B hopping.
The other terms in U, u, (r)3,A, and u,,(r)3,A, for
a = x,y, 7, generate intervalley scattering. We assume that
different types of disorder in the Hamiltonian are uncorre-
lated and x-y isotropic:

(g (O p(¢)) = 12 18,4 81y S(x — 1),
<Ola,j(l‘)aa/ /(1")) = a Baa/a .4,5(1- _ r/),

<,31,j(l‘)ﬂl/,j/(l")> = 511’ /5(1' r').

In the following study, we employ the standard diagram-
matic technique for disordered systems [6,7] to calculate
the weak-localization correction 8o to the conductivity in
the metallic regime prvT > fi. We assume that the Dirac-
like Hamiltonian v3.p dominates the electronic behavior
and that diagonal disorder, Ju(r) in Eq. (2), determines the
elastic scattering rate, 7~ ! = 7,1 = 7yu®/h, where y =
pr/(2mh?v) is the density of states per spin, per valley
[11,12]. The current operator corresponding to the Dirac-
like Hamiltonian is momentum-independent, so that the
current vertex entering the Drude conductivity is renormal-
ized by vertex corrections. Then, the Drude conductivity is
equal to o = 4e2yD, where the diffusion coefficient is
D = v?7,/2 and the transport time is twice the scattering
time, 7, = 27, [8].

TABLE L. Irreducible representations of the planar group C¢, [21], as provided by the matrices
2, Ay, and s;. Representations A, A,, By, B,, E;, and E, are part of the point group of two-
dimensional graphene Cg,; representations E}, E}, and G’ incorporate primitive translations, and

z — —z asymmetric representations are identified by an overscript, e.g., A; [22].

Irreducible representation

7 — —z symmetric

7 — —z asymmetric [22]

Ay (A 3.5, — S,
Ay (Ay) 2., s, + Eysy
By (By) A

B, (B,) S.AL ALs,

E, () (3)(

) () (5)

£ &) (33) (o) ()
B &) (hs ) (35)
B E (x)
A, A,y
¢ @) AY ﬁ)i
A Ays,
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The weak-localization correction o may be written in  and the magnetoresistance, Ap(B,) = 8p(B.) — 6p(0), as
terms of disorder-averaged two-particle correlation func-

tions known as Cooperon propagators C., where the index [ ezpzD Twlr
OPETORPropagtion =, op(B)=——— > ¢ Zcf(q,, (8)
refers to pseudospin (related to A describing valley degrees T 1=0x,y,2
of freedom) and j refers to spin (related to 5). All the
Cooperons that we consider are singlets with respect to e2p? B
. . . < . . . A (B ) = —p Z c:C F 7z
sublattice isospin %, because all isospin-triplet modes have P\B; 2mh I\ ¥ BL)
relaxation gaps ~1/7 [11,12]. Then, § o may be written in M0z ¢ /
terms of a summation with respect to 16 Cooperons con- B — he 1 Bl — he ! )
sisting of combinations of spin and pseudospin singlet and ® 4De ¥’ I 4De 7
triplets: 1 1
F(z) = Inz + ¢<— T —),
e’D , 2z
=_ . (r' =
oo Th P z=% N ch € (r'=r), where ¢ is the digamma function. In Eq. (8), the influence

of an external field B, is taken into account through

[ (zV—F@) 4Tl 4 71 —iw]Cl-(r,r’)=8(r—r’). (5)  discrete values g = (n+1/2)/(Drg), where 5=
ch re ! h/(4DeB,). Used in conjunction with the Cooperon gaps

I‘j- listed in Table II, Egs. (6)—(9) provide a general de-
scription of the weak-localization correction and corre-
sponding low-field magnetoresistance in the presence of
SO coupling in graphene, parametrized by six SO scatter-

Here, the factors ¢y = 1 and ¢, = ¢, = ¢, = —1 take into
account the fact that singlet and triplet Cooperons (of both
spin and pseudospin) appear with opposite signs, and A is
the vector potential of the homogeneous external magnetic : S e T T
field, B = rotA (B. = a,A, — 9.A,). ing rates Ty, Ter» Tzver Tiver Tzv,0» a0 Tw(,

N ; ' In order to analyze the influence of SO coupling in a
realistic experimental situation [13—15], we consider—in
the rest of this Letter—the spin-independent intervalley
scattering rate 7;,! to exceed the decoherence rate 7'
and the rates due to SO coupling. This means that
{rs, F}Y, Ff} > 10, and thus the valley-triplet Cooperons
in Egs. (7)-(9) may be neglected. Then, the six SO rates
may be combined into just two relevant combinations: a
rate T;yrln due to z — —z symmetric SO coupling (the terms

Inelastic dephasing is taken into account in Eq. (5) by
T;I, and, in general, symmetry-breaking perturbations
[such as those contained in the Hamiltonian Eq. (1)]
contribute relaxation gaps Fi- to the otherwise gapless
Cooperons C', as quantified in terms of relaxation rates
summarized in Table II. Then, the zero-field temperature-
dependent correction, §p(0), to the sheet resistance, where
6p(0)/p?> = — S0, may be written as

202D (02 gd V... and hyy) and a rate 7.} due to z — —z asymmetric
5p0) = =LL S e [T Ly, @m0 e T ’
Th =0z coupling (Vg and hgg):
L ] Tom = Tkm T 2700 + 4755, (10)
ep T
=y o ln(_—), ™)
27h .,-,zzéy,z U+ T Tod = Tgh + 270}, + 4Tl (11)

TABLE II.  Scattering rates, due to symmetry-breaking terms in the Hamiltonian Eq. (1), that produce relaxation gaps T’ in the
otherwise gapless Cooperons C’ where j refers to spin and / to Valley The relaxation rate of the intervalley Cooperons 7 and the
intervalley rate 7;,! result from spin- mdependent disorder; intrinsic 7y; and Bychkov-Rashba 75} rates arise from the coupling of spin

and lattice; and rates Tides Todor T Th, !, and 7! account for the coupling of valley and spin degrees of freedom.

Relaxation gaps Relaxation rates

F8=0 7'*_1:7';1-&-7'1-_”1

Oy =Ty =m"+2r, ), +4r ), + 27} + 47} r;,‘ =amy(ul, +ud, +ud, +ud, +ud +ul)/h

FZ = 27' I+ 47'[”16 + 8717, =27yl + u .+ u)/h

FO F(y) = TBR + TVKM + 271,}"6 + 275 Zvo + 477, ] + 47',;10 Tlgli,[ = Az/(iFTg) + 27T’)/( ai, + a .+ a2 )/h2 , ,
Fil— =I5 =13 1 . TBl} = 2rgu? /0 + my(a?, + “x,,\ + a_m +aj, +az,+az,)/h
Th +TBR+TKM+27'ZU0 + 21}, 4Tl Tzw = myB?./h

F%=I‘§, =270 + g + TKM+27,” + 2751, +47’fvlo Twe myB2./h= 7T'y/3”/h

T0 = 2750 + 47,), + 87,1 Toado = TYBLL/N = Ty B2, /N

F=r=r'+ 27'_1 + 27'&,1‘ + 27, +4r L Tl = myYBi/h=myBi,/h=myBi . /h=TmyBi,/h
F* =270 + 2758 + 41l + 4Tva v = pr/Q2mh*v)
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Here, 751 accounts for the Dyakonov-Perel [23] spin-
relaxation contribution, and the other terms account for
the Elliott-Yafet [24] spin relaxation.

The application of an in-plane magnetic field produces
an interplay between SO coupling and Zeeman splitting,
as in semiconductor quantum dots [25,26]. The in-plane

magnetic field EB” introduces an additional term in the
Hamiltonian 6H = (hw/2){ 5,
€; =hw is the Zeeman energy and ¢ = (€, ¢,,0),

where @ = 2ugB|/h,

|| = 1, and we assume that this dominates any orbital
effect of the in-plane field [27]. This couples the spin-
singlet C{ to the triplets C? and CY. The spin part of the

matrix equation for the valley singlet Cooperons
(€Y, €Y, €Y, €?) = C has the form
II —iwl, —iwf, 0
—; -1
1.w€X IT + 7o 0 | 0 =1
—iwf, 0 T+ 7 0
0 0 0 IT + 27;;
IT = DGV + 2¢eA/ch)* + 7,1, Tol = Toym T Tay-
After matrix inversion,
I+ 73!
= S
H(H + Tso ) + w* ez~
0 II(IT + 7") + w?(1 — €2 ) 1- fﬁ/v

xfy (IT + 7 HIIIAT + 71 + (uz] Ez—’°°H + 75l
o I
I+ 27y, er—oo [1 + 2750

asy

where the limit €, — oo of large Zeeman energy essen-
tially means that €, > hrg!.

In the absence of an in-plane field, e, = 0, the low-field
magnetoresistance, Eqs. (8) and (9), is given by

P B, B, B.
Ap= 27rh[F (ﬂ?) F(B +Bdsy) ZF(B +Bso)]

he g =T (12)

3a§y 2De TasyJ " 4De

In the absence of SO coupling, B, = B,,, = 0, Eq. (12)
would describe negative magnetoresistance correspond-
ing to weak localization [11,12] (lower dashed curves in
Fig. 1). In the presence of z — —z symmetric SO coupling
only, fBasy =0, the contribution of the third term in
Eq. (12) is diminished and the first and second terms cancel
each other, leading to a suppression of magnetoresistance
for B, =< B, (upper solid curve on the left of F1g l) which
mimics the effect of a saturated value of 7, 7'¢,1

o' T Tyl When z — —z symmetry is broken desy #0
and B, # 0, there is relaxation of all spin triplets and
the second and third terms in Eq. (12) are suppressed,
leaving the first (singlet) term to determine antilocalization

—

Ap(B,)

B/T) (arb. units) B/(T)

0.3 0.2

m
N
. =3
7/-z symmetric Q
spin-orbit 8
72}
&
2 z/-z asymmetric
3 ! spin-orbit
5 R
St 7 \
g 7
S y
-507
i no spin-orbit
FIG. 1. The low-field magnetoresistivity in the presence of

7 — —z symmetric (left) or asymmetric (right) SO scattering,
as compared to the absence of SO scattering (lower dashed
curves). Solid curves show the influence of SO scattering,
Tom = 257" and 7] = 257'_1, respectively, with Zeeman
energy €; = 0 (top) to €; > 7! (bottom).

behavior at T — 0 with positive magnetoresistance at low
fields B, < B,gy.
In the limit €, > A7,

e*p’ B, B,
- - + :
vl fam) e o

This result shows that, for z — —z symmetric SO coupling
(B,sy = 0), the in-plane field partially restores weak local-
ization at the lowest temperatures, lifting the limitation of
7, discussed above. In contrast, for z — —z asymmetric
SO coupling, in-plane field changes weak antilocalization
into a suppressed weak-localization behavior. The low-
field magnetoresistance calculated using Eq. (8) for inter-
mediate values of €, is plotted in Fig. 1, for z — —z
symmetric (left) and asymmetric (right) SO scattering.

To summarize, among the two extremes of SO coupling
in graphene, z — —z symmetric and z — —z asymmetric,
the manifestation of the latter in quantum transport resem-
bles that observed in a 2D electron gas in GaAs/AlGaAs
heterostructures, whereas the former is peculiar for gra-
phene. Experimentally, the effect of z — —z symmetric
SO coupling can be taken for a decoherence time ““satura-
tion” [7,(T — 0) = T4,] at low temperatures. Unlike
inelastic decoherence, such a saturation can be partially
lifted by electron Zeeman splitting induced by a strong
in-plane magnetic field, making the negative magnetore-
sistance Ap(B;) sharper when 7,'(T— 0)— 0. It is
necessary to mention that a similar behavior of weak-
localization magnetoresistance should be expected in
magnetically contaminated conductors [28]. Spin-flip scat-
tering of electrons from localized spins leads to saturation
of T, at the value of the spin-relaxation time, whereas the
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in-plane field freezes local moments, thus suppressing
spin-flip scattering of electrons and restoring the full size
of the weak-localization effect. However, the size of the
in-plane field lifting the saturation of 7, in these two cases
is different: polarization of magnetic impurities requires
upB| > kT, whereas the suppression of the effect of z —
—z symmetric SO coupling occurs when ugB) > hrs_y}n.
This project has been funded by JST-EPSRC Japan-UK
Cooperative Programme Grant No. EP/H025804/1, EU
STREP ConceptGraphene, and the Royal Society.
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