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We study sequential tunneling through a metallic nanoparticle close to the Stoner instability coupled to

parallel magnetized electrodes. Increasing the bias voltage successively opens transport channels

associated with excitations of the nanoparticle’s total spin. For the current this leads just to a steplike

increase. The Fano factor, in contrast, shows oscillations between large super-Poissonian and sub-

Poissonian values as a function of bias voltage. We explain the enhanced Fano factor in terms of

generalized random-telegraph noise and propose the shot noise as a convenient tool to probe the

mesoscopic Stoner instability.
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Introduction.—The onset of ferromagnetic long-range
order in bulk metals was proposed by Stoner [1] as a
consequence of the competition between kinetic and ex-
change energy. The Stoner instability leads to a state with a
macroscopically large total spin S. This may be different in
mesoscopic systems such as metallic nanoparticles or large
quantum dots, which can be modeled by a universal
Hamiltonian characterizing their discrete single-particle
level spacing, Coulomb interaction, and exchange interac-
tion of the electron spins. The latter gives rise to the so
called mesoscopic Stoner instability. The nanoparticle be-
comes partially polarized and the value of the total spin S
sensitively depends on the ratio of exchange interaction
and level spacing [2,3]. Recent theoretical studies of the
mesoscopic Stoner regime addressed the statistics of linear
conductance peaks [4], the interplay with Coulomb charg-
ing [5,6] and the Kondo effect [7,8], the influence of spin-
orbit interaction [9,10], the competition with supercon-
ducting pairing [11,12], its sensitivity to the degree of
chaos [13] and its implications on the thermopower [14].

An experimental confirmation of the mesoscopic Stoner
instability is difficult for at least two reasons. First, mag-
netic moments of individual nanoparticles or quantum dots
are hard to measure. Second, the exchange coupling of a
given nanoparticle is not tunable, which would be desirable
for studying the successive transitions from zero to full
polarization. So far, only the behavior of the Coulomb
peaks as a function of magnetic field served as a tool to
probe the spin properties of quantum dots [15–18].

Transitions between different values S of the total spin
can also be achieved by tunnel coupling the nanoparticle to
source and drain electrodes with a finite bias voltage V.
Increasing the bias voltage enables transitions between
different values S of the total spin. In this Letter, we
suggest to identify the mesoscopic Stoner instability by
using ferromagnetic electrodes with parallel magnetization
directions and measuring the shot noise. We find that for an

even number of accessible values for the total spin S, the
Fano factor is strongly enhanced while for an odd number
it stays sub-Poissonian. This results in oscillations of the
Fano factor as a function of bias voltage that are robust
against asymmetries in the tunnel couplings. We propose
these oscillations as a striking evidence of the mesoscopic
Stoner instability.
Model and technique.—The nanoparticle is represented

as a multilevel quantum dot described by the universal
Hamiltonian [2,3],

Hdot ¼
X
��

"�c
y
��c�� þ ECðN � NGÞ2 � JS2: (1)

The first term describes the spin-degenerate single-particle
levels � of the quantum dot. The second term models
Coulomb charging. Here, EC is the scale of the charging

energy, N ¼ P
��c

y
��c�� is the number of electrons on the

dot, and NG is the equilibrium charge of the dot that can be
tuned by a gate voltage. Finally, the third term describes
a Heisenberg-type spin interaction for the total dot spin

S ¼ P
���0cy�� ~���0c��0 with ferromagnetic exchange

coupling J.
In the following, we assume a constant single-particle

level spacing � and the following hierarchy of energy
scales: EC, �, J � eV * �� J � kBT. The bias voltage
V defines the energy scale for the available excitations.
The inequality EC � eV implies that only two charge
states N0 and N0 þ 1 participate in transport. Because of
the condition � � eV we can neglect all states with
particle-hole excitations. Hence, the dot eigenstates
jN; S; Szi are fully characterized by the total number
N of electrons, the total spin S and its z-component Sz.
The corresponding eigenenergy,

EN;S ¼ �

��
N

2

�
2 þN

2
þ S2

�
þ ECðN�NGÞ2 � JSðSþ 1Þ;

(2)
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is independent of Sz. For a given number of electrons N,
the ground state spin S is the integer value (for even N)
or half-integer (for odd N) value that is closest to
J=½2ð�� JÞ�. This value increases with increasing J and
diverges for J ! �. The latter marks the (macroscopic)
Stoner instability. The excitation energies for changing the
total spin S by one while keeping the charge number N
fixed form a ladder with constant spacing 2ð�� JÞ; i.e.,
the condition eV * �� J ensures that more and more spin
states are involved with increasing bias voltage. Finally,
the inequality �� J � kBT guarantees that thermal
smearing is small enough to resolve individual states
with different total spin S.

To achieve transport, the nanoparticle is tunnel coupled
to two ferromagnetic electrodes with parallel magnetiza-
tions. The Hamiltonian of the total system is given byH ¼
Hdot þ

P
rHr þHtun. The ferromagnets are described in

terms of noninteracting electrons at chemical potential �r

as Htun ¼ P
r ~k��tra

y
r ~k�

c�� þ H:c:, where ayrk� creates an

electron with momentum k and spin � in lead r ¼ L, R.
We assume the leads to have a constant, spin-dependent
density of states �r� which is related to the polarization of
the leads via pr ¼ ð�rþ � �r�Þ=ð�rþ þ �r�Þ. In the fol-
lowing, we assume pL ¼ pR � p. The coupling between

the dot and the leads is described by Htun ¼P
rk�tra

y
rk�c�� þ H:c: The tunnel matrix elements tr are

related to the tunnel-coupling strength via �r� ¼
2�jtrj2�r�. Furthermore, we define �r ¼

P
��r�=2.

In order to evaluate the current and the current noise we
use a real-time diagrammatic approach [19,20] which takes
into account the interactions on the dot exactly and per-
forms a perturbative expansion in the dot-lead coupling.
The idea of this approach is to integrate out the noninter-
acting lead electrons and to describe the remaining
quantum-dot system in terms of its reduced density matrix.
It is sufficient to consider only diagonal matrix elements
pN , S, Sz which describe the probability to find the system
in the eigenstate jN; S; Szi [21]. In the stationary state, they
are determined by the master equation

0 ¼ X
N;S;Sz

W
S0;S0z;S;Sz
N0;N pN;S;Sz ; (3)

whereW�0� are the transition rates from j�i ¼ jN; S; Szi to
j�0i ¼ jN0; S0; S0zi evaluated to first order in the tunnel
couplings �r. The rates for an electron entering the dot
are given by

W
Sþð1=2Þ;Sz�ð1=2Þ;S;Sz
Nþ1;N ¼ X

r

ð1� pÞ�rfrðENþ1;Sþð1=2Þ � EN;SÞ
��������
�
S; Sz;

1

2
;� 1

2

��������Sþ 1

2
; Sz � 1

2

���������
2

W
S�ð1=2Þ;Sz�ð1=2Þ;S;Sz
Nþ1;N ¼ X

r

ð1� pÞ�rfrðENþ1;S�ð1=2Þ � EN;SÞ
��������
�
S� 1

2
; Sz � 1

2
;
1

2
;� 1

2

��������S; Sz

���������
2

;

(4)

where hS; Sz; 12 ;� 1
2 jS0; S0zi denotes the Clebsch-Gordan

coefficient for adding the spin of the incoming spin up or
down electron to the initial spin S, Sz to get the final spin
S0, S0z, and frðxÞ ¼ 1=ðeðx��rÞ=kBT þ 1Þ is the Fermi func-
tion. The electrochemical potentials of the leads are chosen
symmetrically, �R ¼ ��L ¼ eV=2, such that electrons
preferably travel from the left to the right lead. The rate
W

S;Sz;S
0;S0z

N;Nþ1 for the reverse process is the same as W
S0;S0z;S;Sz
Nþ1;N

but with fr being replaced by 1� fr.
From the form of Eq. (4), that applies for parallel

magnetized electrodes, it follows that the probabilities
pN;S;Sz are independent of Sz; i.e., the spin state of the

nanoparticle remains rotationally invariant even under
voltage bias. A different relative orientation of the
leads’ magnetizations, e.g., antiparallel, would break this
symmetry and allow for accumulation of a finite dipole
moment.

The current through the system is given by I ¼ hÎi ¼P
N;N0;S;S0;Sz;S0zW

IS0;S0z;S;Sz
N0;N pN;S;Sz , where the current rates

WI are obtained from the transition rates by multiplying
with the number of electrons transferred between the
dot and leads. We use standard techniques to calculate

the current noise S ¼ R
dthÎðtÞÎð0Þ þ Îð0ÞÎðtÞ � 2hÎi2i in

Coulomb-blockade systems for weak tunnel coupling
[22–24] which may also be formulated within a diagram-
matic language [25]. From this we obtain the Fano factor
defined as F ¼ S=ð2eIÞ.
Results.—For large charging energy EC, only two charge

states, N and N þ 1, are involved in transport. The number
M of possible values for the total spin S increases with
increasing bias voltage. An example for the available states
and how they are connected by tunneling is sketched in
Fig. 1. The interesting regime for detecting the mesoscopic
Stoner instability is achieved when NG is tuned (via a gate
voltage) in such a way that the lowest excitation energy for
a charge transfer, e.g., ENþ1;Sþ1=2 � EN;S, is smaller than

the energy for spin excitations without charge transfer,
EN;S�1 � EN;S, where N and S are the ground state charge

and total spin in the absence of bias voltage. In this case,
M increases successively one by one with increasing bias
voltage. This is accompanied with a step in the current, see
Fig. 2, which is smeared by temperature. Such a series of
steps occurs whenever excited states, e.g., of vibrational or
magnonic nature [26,27], contribute to transport and is no
unique signature of the mesoscopic Stoner regime.
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Much more interesting behavior is seen in the Fano
factor; see Fig. 3. The latter oscillates between large
super-Poissonian (for even M) and sub-Poissonian (for
odd M) values. The (zero-temperature) Fano factor of the
first plateau (M ¼ 2), can be written in a compact analytic
form. For the case that only the states jN; S; Szi and
jN þ 1; Sþ 1

2 ; Szi contribute to transport, we find

FðS; pÞ ¼ 1

1� p2

�
�2
L þ �2

R

ð�L þ �RÞ2

þ p2

�
4S2

3
þ 2Sþ

�
4S

3
þ 1

�
�L � �R

�L þ �R

�	
; (5)

where �L ¼ ð2Sþ 2Þ�L and �R ¼ ð2Sþ 1Þ�R.
In the limit of unpolarized electrodes, p ¼ 0, the

Fano factor F ¼ ð�2
L þ �2

RÞ=ð�L þ �RÞ2 remains sub-
Poissonian. For the limits S ¼ 0 and S ! 1, we recover
the well-known results for transport through a single-level
quantum dot, F ¼ ð4�2

L þ �2
RÞ=ð2�L þ �RÞ2 [28] and the

result for spinless electrons, F ¼ ð�2
L þ �2

RÞ=ð�L þ �RÞ2
[29], respectively.
To achieve a super-Poissonian Fano factor, a finite

polarization, p � 0, is required. For S ¼ 0 we recover
the result known for transport through a single-level quan-
tum dot, F ¼ ½4ð1þ p2Þ�2

L þ ð1� p2Þ�2
R�=½ð1� p2Þ�

ð2�L þ �RÞ2� [30], which becomes super-Poissonian for

p > p� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R=ð2�L þ �RÞ

p
and even diverges for p ! 1.

The super-Poissonian noise (for S ¼ 0) is caused by
bunching of electrons [31,32]. Majority-spin electrons are
transferred through the dot until finally a minority-spin
electron enters. It blocks further transport as it has a small
probability to leave to the drain. Therefore, the current gets
chopped into bunches of majority-spin electrons.
For probing the mesocopic Stoner instability, we con-

sider the case of finite p and large S. The leading
contribution

F ¼ 4

3

p2

1� p2
S2 þOðSÞ (6)

to the Fano factor (of the first plateau) scales quadratically
with S, diverges for p ! 1, and is independent of the
tunnel couplings. This result can be understood as a
generalization of random-telegraph noise. For this, we
consider the different projections Sz for given N and S as
the different states among which the system can switch.
As remarked above, the probability distribution pN , S, Sz is
Sz independent. Current is established by transitions that
change the state to jN þ 1; Sþ 1=2; Sz � 1=2i. For p ¼ 0,
the two possibilities to increase or decrease the z compo-
nent of the spin, weighted by the corresponding Clebsch-
Gordan coefficients, add up such that for each of the states
not only the probability but also the contribution to the
current is independent of the initial Sz. This is different for
finite polarization, p � 0. Then, transitions involving
majority-spin electrons (indicated by solid lines in Fig. 1)
are more likely than those involving minority spins (dotted
lines). As a consequence, the contribution to the current

FIG. 2 (color online). Current as a function of bias voltage.
Arrows mark onset of transport through excited states. NG ¼
nþ 1

2 þ 2nþ3
8

�
EC

� 0:0001, n 2 N, EC ¼ 10�, J ¼ 0:97�, �L ¼
�R, p ¼ 0:3, T ¼ 0:001�. Higher steps become increasingly
difficult to resolve.

FIG. 1 (color online). Nanoparticle states and possible transi-
tions. Solid (dotted) lines indicate tunneling of majority
(minority) spin electrons.

FIG. 3 (color online). Fano factor as a function of bias voltage
for different asymmetries of the tunnel couplings. Other parame-
ters as in Fig. 2.
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depends on the initial value of Sz. In the considered
example, it monotonically increases with Sz. For a
qualitative estimate of the Fano factor, we assume sym-
metric couplings, �L ¼ �R, neglect the Clebsch-Gordan
coefficients, and perform a mapping onto an effective two-
state system. The state representing the positive or negative
values of Sz carries a current I� ¼ eð1� p=2Þ�L.
The average time to change Sz by 1=2 is �0 ¼ 1=
½ð1� p2Þ�L�. The time � to switch from positive to nega-
tive Sz by random walk scales with the square of the
distance, i.e., � ¼ ð2SÞ2�0. For frequencies smaller than
this switching time, the noise of a random-telegraph signal
is given by ðIþ � I�Þ2�=2 [33] from which we estimate the
Fano factor as p2S2=ð1� p2Þ in qualitative agreement with
the result in Eq. (6).

With increasing bias voltage, a third value of the total
spin, e.g., S� 1=2 in addition to S and Sþ 1=2, becomes
available (M ¼ 3) and the Fano factor drops to some sub-
Poissonian value; see Fig. 3. From the alternating way of
how majority and minority spins are involved for the
transitions it follows that the contribution to the current
monotonically increases with Sz for total spin Sþ 1=2 but
decreases for S� 1=2, while it is roughly independent of
Sz for S. As a consequence, the system can rather quickly
change between the high- and low-current states and the
random-telegraph noise is reduced.

For larger values ofM, an Sz dependence of the current is
restricted to the smallest (Smin) and largest (Smax ¼ Smin þ
ðM� 1Þ=2) value of the total spin. A super-Poissonian Fano
factor appears for evenM, since the current either increases
or decreases with Sz for both Smin and Smax. In contrast, the
Fano factor remains sub-Poissonian for odd M, since the
current increases with Sz for Smin but decreases for Smax, or
vice versa.

We finally address the effects of asymmetric tunnel
couplings on our results. To this end, we show in Fig. 3
the Fano factor as a function of the applied bias voltage
for different asymmetries of the tunnel couplings.
Interestingly, the oscillations of the Fano factor persist
even for large asymmetries. The asymmetry only has the
effect of increasing the Fano factor slightly when many
spin states contribute to transport. Thus, the predicted Fano
factor oscillations turn out to be very robust which should
facilitate their experimental observation.

Conclusions.—In conclusion, we discussed spin-
polarized transport through a metallic nanoparticle close
to the mesoscopic Stoner instability. When only two spin
states contribute to transport, we found that random-
telegraph noise leads to a super-Poissonian Fano factor
that scales with the square of the total spin. We, further-
more, found that the Fano factor oscillates as a function of
bias voltage showing super (sub-)Poissonian behavior
when an even (odd) number of spin states contributes to
transport. These oscillations turn out to be robust with
respect to asymmetries of the tunnel coupling, thereby

offering a good tool to experimentally investigate the
mesoscopic Stoner instability.
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[8] S. Rotter, H. E. Türeci, Y. Alhassid, and A.D. Stone, Phys.

Rev. Lett. 100, 166601 (2008).
[9] D. A. Gorokhov and P.W. Brouwer, Phys. Rev. B 69,

155417 (2004).
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