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We report a new attractive force between ions that are shielded by degenerate electrons in quantum

plasmas. Specifically, we show that the electric potential around an isolated ion has a hard core negative

part that resembles the Lennard-Jones–type potential. Physically, the new electric potential is attributed to

the consideration of the quantum statistical pressure and the quantum Bohm potential, as well as the

electron exchange and electron correlations due to electron-1=2 spin within the framework of the quantum

hydrodynamical description of quantum plasmas. The shape of the attractive potential is determined by

the ratio between the Bohr radius and the Wigner-Seitz radius of degenerate electrons. The existence of

the hard core negative potential will be responsible for the attraction of ions forming lattices and atoms or

molecules, as well as for critical points and phase transitions in quantum plasmas at nanoscales.
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A study of the potential distribution around a test
charged object is of fundamental importance in many
physical systems (e.g., dilute charge stabilized colloidal
suspensions such as latex spheres in water, micelles and
microemulsions, condensed matter with strongly corre-
lated electrons and holes, strongly coupled dusty and
quantum plasmas in laboratory and astrophysical environ-
ments, etc.), since its knowledge predicts how a cloud of
opposite polarity charges will shield a test charge particle
over a certain radius, which is known as the Debye-Hückel
radius in the context of electrolytes and plasmas and the
Thomas-Fermi or Yukawa radius in the context of con-
densed matter. The traditional repulsive screened Coulomb
potential assumes the form �ðrÞ ¼ ðQ=rÞ expð�r=�Þ,
where Q is the test charge and � the shielding radius of
the sphere. In a classical electron-ion plasma [1,2], an
isolated ion is shielded by nondegenerate Boltzmann dis-
tributed electrons, and hence one [3] replacesQ by Zie and

� by the electron Debye radius �De ¼ ðkBTe=4�n0e
2Þ1=2,

where Zi is the ion charge state, e the magnitude of the
electron charge, kB the Boltzmann constant, Te the electron
temperature, and n0 the unperturbed electron number den-
sity. For a slowly moving test charge in collisionless [4]
and collisional [5,6] plasmas, there appear additional far-
field potentials decreasing as the inverse cube and inverse
square of the distance between the test charge and the
observer. In a collisionless dusty plasma [7–9] with
Boltzmann distributed electrons and ions, a micron-sized
negatively charged isolated dust is shielded by both posi-
tive ions and electrons. Here Q equals Zde, and � is

replaced by the effective dusty plasma Debye radius �D ¼
�De�Di=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
De þ �2

Di

q
, where Zd is the number of electrons

residing on a dust grain, �Di ¼ ðkBTi=4�ni0e
2Þ1=2 the ion

Debye radius, Ti the ion temperature, ni0 ¼ n0 þ Zdnd0
the ion number density, and nd0 the dust number density. In
dusty plasmas with Te � Ti, we have �D � �Di.
Furthermore, in dense Thomas-Fermi plasmas with an
impurity ion (with the charge state Z�), the ion is shielded
by nonrelativistic degenerate electrons, so that Q ¼ Z�e
and � is replaced by the Thomas-Fermi radius [10] �F ¼
ðEF=4�n0e

2Þ1=2, where the electron Thomas-Fermi energy

is denoted by EF ¼ ð@2=2m�kBÞð3�2Þ2=3n2=30 , @ is the

Planck constant divided by 2�, and m� is the effective
mass of the electrons (for example, for semiconductor
quantum wells, we typically have m� ¼ 0:067me, where
me is the rest mass of the electrons).
In the past, tremendous progress has been made in

carrying out systematic theoretical and numerical studies
of phase diagrams [11–17] for colloidal systems, dusty
plasmas, and strongly interacting matter by supposing
that like-charged particles repel each other due to the
Debye-Hückel or Yukawa repulsive force. However, be-
sides the repulsive interaction, there are also attractive
forces [7,9] between two like-charged particles due to the
overlapping Debye spheres [18] and due to the polarization
of charged particulates by the sheath electric field [19,20].
Henceforth, both short-range repulsive and long-range at-
tractive potentials play a decisive role in the theory and
experiments of phase transitions in colloidal and dusty
plasmas.
In this Letter, we present a new attractive force between

ions that are shielded by the degenerate electrons in
strongly coupled quantum plasmas that are ubiquitous in
a variety of physical environments (e.g., the cores of
Jupiter and white dwarf stars [21,22] and warm dense
matter [23]) and in compressed plasmas produced by in-
tense laser beams [24], as well as in the processing devices
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for modern high technology (e.g., semiconductors [25],
thin films, and nanometallic structures [26], etc.).
Specifically, we shall use here the generalized quantum
hydrodynamical equations [26] for nonrelativistic degen-
erate electron fluids supplemented by Poisson’s equation.
The generalized quantum hydrodynamical model includes
the quantum statistical pressure and the Bohm potential
[27–29], as well as the electron-exchange and electron-
correlation effects. We demonstrate here that the electric
potential around an isolated ion in quantum plasmas has a
new distribution, the profile of which in special cases
resembles the Lennard-Jones–type potential. It emerges
that the newly found electric potential, arising from the
static electron dielectric constant that includes the com-
bined effects of the density perturbations associated with
the quantum statistical pressure and the quantum force
[30–32] involving the overlapping of the electron wave
function due to the Heisenberg uncertainty and Pauli’s
exclusion principles, as well as the electron-exchange
and electron-correlation effects [33] due to electron-1=2
spin, embodies a short-range negative hard core electric
potential. The latter will be responsible for Coulomb ion
crystallization and oscillations of ion lattices under the new
force associated with our exponential oscillating-screened
Coulomb potential in strongly coupled quantum plasmas.

Let us consider a quantum plasma in the presence of
nonrelativistic degenerate electron fluids and mildly
coupled ions that are immobile and form the neutralizing
background. In our quantum plasma, the electron and ion
coupling parameters are �e ¼ e2=aekBTF and �i ¼
Z2
i e

2=aikBTi, respectively, where ae � ai ¼ ð3=4�n0Þ1=3
is the average interparticle distance and TF ¼
ð@=2m�kBÞð3�2n0Þ2=3 the Fermi electron temperature. It
turns out that �i=�e ¼ Z2

i TF=Ti � 1, since in quantum
plasmas we usually have TF > Ti. The dynamics of degen-
erate electron fluids is governed by the continuity equation

@n

@t
þr � ðnuÞ ¼ 0; (1)

the momentum equation [26]

m�
�
@u

@t
þu �ru

�
¼er��n�1rPþrVxcþrVB; (2)

and Poisson’s equation

r2� ¼ 4�e

�
ðn� n0Þ � 4�Q�ðrÞ; (3)

where n is the electron number density, u the electron fluid
velocity, � the electric potential, and � the relative
dielectric permeability of the material (for example, for
semiconductor quantum wells we have � ¼ 13). We have

denoted the quantum statistical pressure P ¼
3ðn0m�v2�=5Þðn=n0Þ5=3, where v� ¼ @ð3�2Þ1=3=m�r0 is

the electron Fermi speed and r0 ¼ n�1=3
0 represents the

Wigner-Seitz radius, and the sum of the electron-exchange

and electron-correlation potentials is [33] Vxc¼
�0:985ðe2=�Þn1=3½1þð0:034=aBn1=3Þlnð1þ18:37aBn

1=3Þ�,
where aB ¼ �@2=m�e2 represents the effective Bohr ra-
dius. The quantum Bohm potential is [30–32] VB ¼
ð@2=2m�Þð1=

ffiffiffi
n

p Þr2
ffiffiffi
n

p
. We have thus retained the desired

quantum forces that act on degenerate electrons in our
nonrelativistic quantum plasma. The quantum hydrody-
namic equations (1)–(3) are valid [26,34,35] if the plas-
monic energy density @!pe is smaller than (or comparable

to) the Fermi electron kinetic energy kBTF, where !pe ¼
ð4�n0e2=�m�Þ1=2 is the electron plasma frequency, and the
electron-ion collision relaxation time is greater than the
electron plasma period.
Letting n ¼ n0 þ n1, where n1 � n0, we linearize (1)

and (2) and combine the resultant equation to obtain the
electron density perturbation n1 that can be inserted into
Eq. (3). The Fourier transformation in space leads to the
electric potential around an isolated ion. In the linear
approximation, we have [4,36]

�ðrÞ ¼ Q

2�2

Z expðik � rÞ
k2D

d3k; (4)

where r denotes the position relative to the instantaneous
position of the point test charge, and the dielectric constant
for a dense quantum plasma with quasistationary density
perturbations is given by

D ¼ 1þ !2
pe

k2ðv2� þ v2
exÞ þ @

2k4=4m2�
: (5)

Here we have denoted vex ¼ ð0:328e2=m��r0Þ1=2 	
½1þ 0:62=ð1þ 18:36aBn

1=3
0 Þ�1=2.

The inverse dielectric constant can be written as

1

D
¼ ðk2=k2sÞ þ �k4=k4s

1þ ðk2=k2sÞ þ �k4=k4s
; (6)

where ks ¼ !pe=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2� þ v2

ex

p
is the inverse Thomas-Fermi

screening length and � ¼ @
2!2

pe=4m
2�ðv2� þ v2

exÞ2 mea-

sures the importance of the quantum recoil effect. We
note that � is larger for larger values of r0 or, alternatively,
for lower densities n0. If m� ¼ me, � ¼ 1, then � depends
only on r0=aB with aB ¼ @

2=mee
2. By inserting Eq. (6)

into Eq. (4), the latter can be written as

�ðrÞ ¼ Q

4�2

Z � ð1þ bÞ
k2 þ k2þ

þ ð1� bÞ
k2 þ k2�

�
expðik � rÞd3k; (7)

where b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� 1

p
and k2
 ¼ k2s½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p �=2�.
Here, we use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� 1

p
for �> 1=4. The

integral in Eq. (7) can be evaluated by using the general
formula

Z expðik � rÞ
k2 þ k2


d3k ¼ 2�2 expð�k
rÞ
r

; (8)
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where the branches of k
 must be chosen with positive real
parts so that the boundary condition � ! 0 at r ! 1 is
fulfilled.

First, for �> 1=4, the solution of the equation

k2
 ¼ k2sð1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� 1

p Þ=2� yields k
 ¼ ðks=
ffiffiffiffiffiffi
4�

p Þ	
½ð ffiffiffiffiffiffi

4�
p þ 1Þ1=2 � ið ffiffiffiffiffiffi

4�
p � 1Þ1=2� � kr � iki, and the elec-

tric potential

�ðrÞ ¼ Q

r
½cosðkirÞ þ b sinðkirÞ� expð�krrÞ: (9)

In the limit � � 1, we recover the exponential cosine-
screened Coulomb potential [37]

�ðrÞ ¼ Q

r
cosðks �rÞ expð�ks �rÞ; (10)

where �r ¼ r=ð4�Þ1=4. Second, for � ! 1=4, we have kþ ¼
k� ¼ ffiffiffi

2
p

ks, and

�ðrÞ ¼ Q

r

�
1þ ksrffiffiffi

2
p

�
expð� ffiffiffi

2
p

ksrÞ: (11)

Third, for�< 1=4, the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
is real, and we

obtain k
 ¼ ksð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p Þ1=2= ffiffiffiffiffiffi
2�

p
. The resultant

electric potential is

�ðrÞ¼Q

2r
½ð1þbÞexpð�kþrÞþð1�bÞexpð�k�rÞ�: (12)

We note that, in the limit � ! 0, we recover from (12) the
modified Thomas-Fermi screened Coulomb potential
�ðrÞ ¼ ðQ=rÞ expð�ksrÞ. Furthermore, the newly found
electrical potential, given by Eq. (12), is significantly
different from that potential [e.g., Eq. (13) in Ref. [36],
indicating that the electric potential is proportional to
r�3 cosð2kFrÞ, where kF ¼ pF=@ ¼ jkjj2 is the Fermi
wave number and pF the Fermi electron momentum]
which involves the Friedel oscillations [38] arising from
the Kohn anomaly [39] related with the discontinuous
Fermi surface.

In Fig. 1, we display the profiles of the potential [given
by Eqs. (9), (11), and (12), for �> 1=4, � ¼ 1=4, and
�< 1=4, respectively] for different values of�. We clearly
see the new short-range attractive electric potential that
resembles the Lennard-Jones–type potential for �> 1=4,
while for smaller values of � the attractive potential van-
ishes. Figure 2(a) depicts the distance r ¼ d from the test
ion charge where d�=dr ¼ 0 and the electric potential has
its minimum, and Figs. 2(b) and 2(c) show the values of �
and d2�=dr2 at r ¼ d. The value of ðd2�=dr2Þ determines
the oscillation frequency and dispersive properties of the
plasma as shown below. For � & 0:5, the electric potential
and its second derivative vanish, and there is no attractive
potential associated with the stationary test ion charge.
Furthermore, we note that the shielding of a moving test
charge and bound states near a moving charge in a quantum
plasma have been investigated by Else, Kompaneets, and
Vladimirov [40] by using the Lindhard dielectric function

[41] that ignores the electron-exchange and electron-
correlation effects.
The interaction potential energy between two dressed

ions with charges Qi and Qj at the positions ri and rj can

be represented as Ui;jðRijÞ ¼ Qj�iðRijÞ, where �i is the

potential around particle i andRij ¼ ri � rj. For �> 1=4,

it reads, by using Eq. (9),

Ui;jðRijÞ ¼
QiQj

jRijj expð�krjRijjÞ½cosðkijRijjÞ

þ b sinðkijRijjÞ�: (13)

On account of the interaction potential energy, ions would
suffer vertical oscillations around their equilibrium posi-
tion. The vertical vibrations of ions in a crystallized ion
string in quantum plasmas are governed by

M
d2�zjðtÞ

dt2
¼ �X

i�j

@Uijðri; rjÞ
@zj

; (14)
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FIG. 1 (color online). The electric potential � as a function
of r for � ¼ 10 (dash-dotted curve), � ¼ 1 (dashed curve), � ¼
1=4 (solid curve), and � ¼ 0 (dotted curve).
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FIG. 2 (color online). (a) The distance r ¼ d from the test ion
charge, where d�=dr ¼ 0 and the electric potential has its
minimum, and (b) the values of the potential � and (c) its second
derivative d2�=dr2 at r ¼ d.
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where �zjðtÞ½¼ zjðtÞ � zj0� is the vertical displacement of

the jth ion from its equilibrium position zj0 andM the mass

of the ion. Assuming that �zjðtÞ is proportional to

exp½�ið!t� jkaÞ�, where ! and k are the frequency and
wave number of the ion lattice oscillations, respectively,
and that Qi ¼ Qj ¼ Q, Eq. (14) for the nearest-neighbor

ion interactions gives

!2 ¼ 4Q2

Md3
S expð�krdÞsin2

�
kd

2

�
; (15)

where S ¼ ½2ð1þ krdÞ þ ðk2r � k2i Þd2�ðcos�þ b sin�Þ þ
2kidð1þ krdÞðsin�� b cos�Þ. � ¼ kid, and d is the sepa-
ration between two consecutive ions. We note that Eq. (15)
can also be obtained from the formula [42]

!2 ¼ 4

M

�
d2WðrÞ
dr2

�
r¼d

sin2
�
kd

2

�
; (16)

where the interion potential energy is represented as
WðrÞ ¼ ðQ2=rÞ expð�krrÞ½cosðkirÞ þ b sinðkirÞ� for �>
1=4. Hence, the lattice wave frequency is proportional to

½d2�ðrÞ=dr2�1=2r¼d [cf. Fig. 2(c)] and decreases rapidly for

�< 0:5.
In summary, we have discovered a new attractive force

between two ions that are shielded by degenerate electrons
in an unmagnetized quantum plasma. There are several
consequences of our newly found short-range attractive
force at quantum scales. For example, due to the trapping
of ions in the negative part of the exponential oscillating-
screened Coulomb potential, there will arise ordered ion
structures depending on the electron density concentration,
which in fact controls the Wigner-Seitz radius r0. The
formation of ion clusters or ion atoms will emerge as
new features that are attributed to the new electric potential
that we have found here. Finally, under the action of the
attractive force, we can have the formation of Coulombic
ion lattices (Coulomb ion crystallization) and ion lattice
vibrations, as well as the phenomena of phase separations
at nanoscales in dense quantum plasmas (e.g., from solid to
liquid-vapor phases) depending upon how one controls the
ratio r0=aB. Thus, the ratio between the interaction energy
between the two nearest-neighbor ions in the presence of
the oscillating exponential Coulomb potential and the ion
thermal energies, as well as the interparticle spacing, are
the key parameters which will determine a critical point
that is required for phase transitions in quantum plasmas.
In conclusion, the present investigation, which has re-
vealed the new physics of collective electron interactions
at nanoscales, will open a new window for research in one
of the modern areas of physics dealing with strongly
coupled degenerate electrons and nondegenerate mildly
coupled ions in dense plasmas that share knowledge with
cooperative phenomena (e.g., the formation of ion lattices)
in condensed matter physics and in astrophysics. Thus, the
present investigation contributes to enhancing the existing
knowledge of Wigner crystallization in two-component

Coulomb systems [43,44] that do not account for an at-
tractive force between like-charged particles.
This work was supported by the Deutsche For-

schungsgemeinschaft through Project No. SH21/3-2 of
the Research Unit 1048.
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