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We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent

flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show

that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer:

from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong

rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy

flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system

with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse

energy cascade may be detected and rationalize the role played by helicity in the energy transfer process,

showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional

numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves

the road for future studies on the influence of helicity on small-scale intermittency and the nature of the

nonlinear interaction in magnetohydrodynamics.

DOI: 10.1103/PhysRevLett.108.164501 PACS numbers: 47.27.�i

Inviscid invariants of the Navier-Stokes (NS) equations
are crucial in determining the direction of the turbulent
energy transfer [1]. In some cases, as for fully isotropic and
homogeneous turbulence in 2D, the presence of two posi-
tively defined invariants (energy and enstrophy) does not
allow a stationary transfer of both quantities, neither to
small nor to large scales [2]. In the presence of two fluxes,
they must necessarily flow in opposite directions [3–7] and
this remains true even for turbulent systems in noninteger
dimensions obtained by fractal Fourier decimation [8]. The
fluid equations also possess two inviscid invariants in 3D:
energy and helicity (i.e., the scalar product of velocity and
vorticity). The inviscid conservation of helicity was dis-
covered relatively recently [9,10]. At variance with energy,
helicity is not positively defined. This allows for a simul-
taneous small-scale transfer of energy and helicity, as
confirmed by the results of two-point closures [10–12]
and direct numerical simulations [13,14]. Nevertheless, a
reversal of the flux of energy has been observed in geo-
physical flows subject to the Earth’s rotation [15,16] as
well as in shallow fluid layers [17–22]. In both cases, this
phenomenon is accompanied by strong anisotropic effects
and by a substantial two-dimensionalization of the flow,
induced either by the rotation or by the effects of confine-
ment. Moreover, rotations inject fluctuations into the hel-
ical sector while a perfect two-dimensional flow has
vanishing pointwise helicity, vorticity always being or-
thogonal to velocity. Here, we rationalize these findings,
showing that inverse energy transfer is much broader than
previously thought and is present in all flows in nature. In
order to highlight this mechanism, we investigate in detail

the transfer properties of NS equations in 3D homogeneous
systems at changing the nature of the triadic nonlinear
interactions. We show that an inverse energy cascade oc-
curs also in 3D isotropic flow whenever parity invariance is
broken and helicity acquires a well-defined sign at all wave
numbers. The key new idea is to make a suitable surgery of
the NS equations, such as to disentangle triad by triad the
properties of the nonlinear energy transfer. In particular,
we show that the energy flux is always reversed by keeping
only triadic interactions between sign-defined helical
modes, preserving homogeneity and isotropy and breaking
reflection invariance. The role played by helicity in the
energy transfer mechanism of 3D flows has attracted a
broad scientific interest (see, e.g., [14] and references
therein). Dynamical systems have been developed to study
in detail energy and helicity transfer at high Reynolds
numbers [23,24]. Further, speculations connecting the ex-
istence of intermittent bursts in the energy cascade induced
by a ‘‘local’’ helicity blocking mechanism have been pro-
posed [23]. Despite these important contributions, the
understanding of the phenomenology of helicity remains
‘‘mysterious,’’ as summarized in the conclusion of a recent
state-of-the-art numerical study [14]. Here, we present
theoretical and numerical evidence of a new phenomenon
induced by helicity conservation: a statistically stationary
backward energy transfer can be sustained even in 3D fully
isotropic turbulence. The starting point of our analysis is
the well-known helical decomposition [12] of the velocity
field vðxÞ, expanded in a Fourier series, uðkÞ:

u ðkÞ ¼ uþðkÞhþðkÞ þ u�ðkÞh�ðkÞ; (1)
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where h� are the eigenvectors of the curl operator ik�
h� ¼ �kh�. In particular, we choose h� ¼ �̂ � k̂� i�̂,
where �̂ is an arbitrary versor orthogonal to k which
satisfies the relation �̂ðkÞ ¼ ��̂ð�kÞ (necessary to ensure
the reality of the velocity field). Such a requirement is
satisfied, e.g., by the choice �̂ ¼ z� k=kz� kk, with z
an arbitrary vector. In terms of this exact decomposition of
each Fourier mode energy, E ¼ R

d3xjvðxÞj2, and helicity,
H ¼ R

d3xv � w, where w is the vorticity, are simulta-

neously diagonalized and written as

E ¼ X

k

juþðkÞj2 þ ju�ðkÞj2;

H ¼ X

k

kðjuþðkÞj2 � ju�ðkÞj2Þ:
(2)

Similarly, the nonlinear term of the NS equations can be
exactly decomposed in four independent classes of triadic
interactions, determined by the helical content of the com-
plex amplitudes, uskðkÞ, with sk ¼ � (see [12] and right
panel of Fig. 1). Among three generic interacting modes
uskðkÞ, uspðpÞ, and usqðqÞ, one can identify eight different
helical combinations (sk ¼ �, sp ¼ �, sq ¼ �). Among

them, only four are independent because of the symmetry
that allows us to change all signs of helicity simulta-
neously. Let us now consider the dynamics of an incom-
pressible flow r � v ¼ 0, which is determined by a
decimated NS equation in which all interactions between
modes have been switched off, except for those with a
well-defined sign of helicity, e.g., positive (sk ¼ þ,
sp ¼ þ, sq ¼ þ) (class I in Fig. 1). We define the projec-

tor on positive or negative helicity states as

P � � h� � h�

h� � h� ; (3)

where �� stands for the complex conjugate. Then, we project
the velocity field into its positive helicity component

vþðxÞ � X

k

eikxPþuðkÞ (4)

and we consider the decimated NS equations

@tv
þ ¼ ð�vþ � rvþ � rpÞþ þ ��vþ þ fþ; (5)

where � is the viscosity, p is the pressure, and f is the
external forcing stirring the fluid around a wave vector kf.

The nonlinear term and the forcing are projected on the
positive helicity states, with the same procedure followed
for the velocity field (4). The resulting system has two
positive definite invariants—see Eq. (2)—the energy and
the helicity, H ¼ P

kkjuþðkÞj2, and contains only interac-
tions between positive helicity modes. Helicity becomes a
coercitive quantity. Those interactions cannot sustain a
simultaneous forward cascade of energy and helicity, for
the same arguments which forbid the existence of a simul-
taneous forward cascade of energy and enstrophy in 2D
turbulence [2,12]. Therefore, the dynamics of Eq. (5)
should display a double cascade phenomenology, charac-
terized by an inverse energy cascade with Kolmogorov

spectrum EðkÞ � k�5=3 for k � kf and a direct helicity

cascade with a k�7=3 spectrum for k 	 kf. It is interesting

to note that, at variance with usual 3D NS dynamics, such a
flow should not display a dissipative anomaly for kinetic
energy; i.e., energy dissipation should vanish in the limit

FIG. 1 (color online). Left: Comparison between vorticity fields for normal NS turbulence (top row) and for inverse cascade 3D
turbulence (bottom row). Right: A pictorial scheme of all classes of triadic interactions in NS according to the helical Fourier
decomposition and dynamical analysis proposed in [12]. Dashed (red) arrows denote backward energy transfer, while solid (blue)
arrows stem for direct energy transfer. Thickness denotes different intensities of the energy flux. In particular, class I, the one
investigated in this Letter, has backward events that dominate the dynamics, suggesting it as a candidate for the inverse cascade
observed in different realistic 3D or quasi-3D flows configurations [13,15,19–21]; classes III and IV have only forward events, and
class II has mixed events.
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� ! 0. Indeed, the direct helicity cascade carries also a
residual, nonconstant flux of kinetic energy toward small
scales which decays as k�1 and therefore vanishes in the
high Reynolds number limit. As a consequence, one may
speculate that the decimated NS equations possess a less
singular spatiotemporal evolution and can be amenable to
show the uniqueness and existence of solutions for all
times. Numerical simulations have been performed with
a fully dealiased, pseudospectral code at resolution 5123 on
a triply periodic cubic domain of size L ¼ 2�. The flow
is sustained by a random Gaussian forcing, with
hfiðk; tÞfjðq; t0Þi ¼ FðkÞ�ðk� qÞ�ðt� t0ÞQi;jðkÞ, where

QijðkÞ is a projector assuring incompressibility and FðkÞ
has support only in the high wave number range jkj 2
½kmin ¼ 25:kmax ¼ 32
.

A visual inspection of the vorticity fields offered in
Fig. 1 shows the differences between the forward cascade,
which develops in standard 3D NS equations forced at
large scales, and the novel 3D inverse cascade regime
obtained from the decimated NS Eq. (5) forced at small
scales. The latter does not possess any filamentary struc-
ture in the vorticity field, witnessing the fact that the vortex
stretching mechanism, which is responsible for the forward
cascade in standard 3D systems, is here absent.

In Fig. 2, we show a typical evolution of the energy
spectrum obtained from Eq. (5) by initializing the flow
with energy only at high wave numbers. The development

of an inverse cascade with a Kolmogorov spectrum EðkÞ �
k�5=3 is unambiguous.

In the absence of a large-scale dissipative mechanism,
the inverse cascade would accumulate the kinetic energy in
the lowest available mode, originating a condensed state
[20]. In order to avoid this phenomenon, we made a second
series of numerical simulations, adding a hypoviscosity at
large scales / ��1v. In such a case, the total kinetic energy
becomes stationary, as shown in Fig. 3, and is equally

distributed among the three velocity components, showing
that the flow is fully isotropic. This allows us to study
scaling properties without having to cope with anisotropic
subleading contributions [25]. In the inset of Fig. 3, we
show the stationary energy flux in Fourier space, defined as
�ðkÞ � ðd=dtÞR1

k EðpÞdp, where the time derivative is

computed by taking into account only the nonlinear terms
of Eq. (5). The negative plateau in the inertial range of
wave numbers is a clear indication of the large-scale
energy transfer.
The inverse cascade which arises from Eq. (5) is not

intermittent. The probability distribution functions (PDFs)
of the longitudinal velocity increments �rv ¼ ½vðxþ rÞ �
vðxÞ
 � r̂ at a distance r within the inertial range are self-
similar and almost Gaussian (see the inset of Fig. 4). The
scaling of the second- and the fourth-order moments of
velocity increments S2ðrÞ ¼ hð�rvÞ2i and S4ðrÞ ¼ hð�rvÞ4i
follow the dimensional scaling SpðrÞ � rp=3 (see Fig. 4).

This is a signature of all known inverse cascades (see, e.g.,
[26] for the case of a 2D NS equation) when fluctuations
are transferred from faster to slower degrees of freedom
[27]. Previous studies have shown the possibility to pro-
duce large-scale motion by nonparity invariant small-scale
forcing only at small Reynolds numbers or in the quasi-
linear regime [28]. Conversely, our results do not trivially
originate from the projection of the forcing on the positive
helicity states but are genuine effects of the nonlinear
dynamics. To assess this issue, we performed a test simu-
lation of the complete NS equation with the same projected
forcing used in Eq. (5). After an initial transient, in which
part of the energy accumulates at the forcing scale, a direct
cascade sets in and all the energy injected is transferred
toward small scales. This excludes the possibility that the
forcing alone could be responsible for the inverse energy
transfer observed in the decimated NS equation.

FIG. 2 (color online). Nonstationary spectrum in the inverse
energy cascade regime. The straight dashed line represents the
k�5=3 slope.

FIG. 3 (color online). Evolution of the three components of the
turbulent kinetic energy as a function of time, hðviÞ2i, with i ¼ x
[solid (red) line], i ¼ y [dashed (green) line], and i ¼ z [dotted
(blue) line]. Inset: energy flux,�ðkÞ, in the Fourier space. Notice
the clear negative plateau in the inertial range k < kf.
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In conclusion, we have presented theoretical and nu-
merical evidence that a decimated version of the NS equa-
tions, such that only modes with a given sign of helicity are
retained, displays an inverse energy transfer mechanism.
This phenomenon, which has been previously observed
only in 2D turbulence or in strongly anisotropic 3D flows
under bidimensionalization effects, is here observed for the
first time in a fully isotropic 3D system and is intrinsically
connected to the nonlinear dynamics of all flows in nature.
Our findings show that all 3D flows in nature possess
nonlinear interactions that may lead to a statistically sta-
tionary inverse energy cascade.

The scientific impact of our findings is manifold. First, it
allows us to highlight those backward events in the energy
transfer mechanism which are known to exist also in un-
truncated NS equations and that are one of the main
theoretical and applied challenges; see, e.g., [29] for the
case of subgrid modeling in large eddy simulations.
Second, the link between backward energy events with
the helical nature of triad interaction shows the key role
of the coupled energy-helicity dynamics. Third, by clearly
detecting which triadic interaction is responsible for for-
ward and backward energy transfer, we pave the road for
closure and analytical approaches aimed at understanding
the whole energy transfer distribution.

This Letter also opens the way to further investigations.
An obvious extension would be to integrate Eq. (5) with a
large-scale forcing. In this case, a pure forward helicity
cascade must develop as recently observed in flows of
geophysical interest [13], provided that energy is removed
at the forcing scale to avoid a pileup of fluctuations. More
interesting, one could consider the case of a complementary
decimation with respect to the one discussed here, i.e.,
eliminating only those triads that transfer energy backward

(classes III and IV in Fig. 1). It is very tempting to speculate
that such a system could display a direct energy cascade
with reduced—or even vanishing—intermittency because
one has removed all the obstacles, i.e., those events inwhich
the forward energy transfer is stopped and/or reversed by
the interaction with the helicity flux [23]. A surgery of
interactions is potentially a tool to gauge the degree of
small-scale intermittency as a function of the nature of the
triads; it opens a new methodology for theoretical and
numerical studies of statistical turbulence. Finally, similar
decomposition may shed lights also in the evolution of
conducting fluids, where three invariants, kinetic plus mag-
netic energy, cross helicity, and magnetic helicity, are
known to produce a complex phenomenology [30].
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