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We report on a novel response to biases in deterministic superdiffusion. For its reduced map, we show

using infinite ergodic theory that the time-averaged velocity (TAV) is intrinsically random and its

distribution obeys the generalized arcsine distribution. A distributional limit theorem indicates that the

TAV response to a bias appears in the distribution, which is an example of what we term a distributional

response induced by a bias. Although this response in single trajectories is intrinsically random, the

ensemble-averaged TAV response is linear.
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Introduction.—Intrinsic randomness in macroscopic ob-
servables has been found in a broad range of processes
more recently from biological transport to fluorescence of
single nanocrystals [1–4]. Diffusion coefficients in biologi-
cal transports show large fluctuations [1,2]. The ratio of an
on-state in the fluorescence of nanocrystals does not con-
verge to a constant and is different in each quantum dot [4].
The randomness of time-averaged observables can be
characterized by power-law trapping time distributions in
stochastic models, such as those in continuous time ran-
dom walks (CTRWs) [5–7] and dichotomous stochastic
processes [8]. Such randomness is due to the breakdown
of the law of large numbers stemming from a diverging
mean trapping time.

Dynamical systems with infinite-invariant measures can
be viewed as stochastic processes generating random time-
averaged observables. Infinite ergodic theory plays an
important role in elucidating such observables [9–14]. It
guarantees that a time average of an observation function
converges in distribution. In other words, time-averaged
observables are intrinsically random if the invariant mea-
sure cannot be normalized. In dynamical systems generat-
ing subdiffusion, the distributional limit theorem for the
diffusion coefficients obtained by the time-averaged mean
square displacements (TAMSDs) has been shown using
infinite ergodic theory [15].

In anomalous diffusion, the mean square displacement
(MSD) grows nonlinearly with time, hxðtÞ2i / t�ð� � 1Þ.
Diffusion is called subdiffusion if �< 1 and superdiffu-
sion if �> 1. One mechanism generating subdiffusion is
the divergence in the mean trapping time describing ran-
dom walks like CTRW. If the mean trapping time diverges,
the diffusion coefficients obtained from TAMSDs become
random [5–7,15]. Three different mechanisms underlying

superdiffusion have been identified: One stems from posi-
tive correlations in random walks, modeled by a fractional
Brownian motion [16]; the second from persistent motions
in random walks, called Lévy walks [17]; the third from
very long jumps in random walks, called Lévy flights [18].
In Lévy walks and flights, the second moment of the length
of persistence motion and of jumps diverges due to a power
law. Such power laws are observed in Hamiltonian systems
[19,20], rotating flow [21], polymer diffusion [18], biologi-
cal transport [22], intermittent search [23], and light diffu-
sion [24]. Persistent times in Lévy walks and trapping
times in CTRWs are characterized by indifferent fixed
points in deterministic models [25]. Therefore, random
transport coefficients will be observed in Lévy walk with
the divergent mean persistent time.
Although random transport coefficients are universal in

both unbiased and biased subdiffusions due to the diver-
gent mean trapping time [26,27], it is not clear whether
time-averaged observables are intrinsically random in
superdiffusions. Moreover, little is known about responses
of time-averaged drifts (TADs) to biases in superdiffusions
whereas in anomalous diffusion a generalized Einstein
relation holds [28]. In this Letter, we show a distributional
limit theorem for TADs using deterministic superdiffusion
models related to Lévy walks under bias and no bias.
Surprisingly, a TAD is intrinsically random whether biased
or unbiased. The result leads to a distributional response to
bias; i.e., the response to bias would be characterized by a
change in distribution.
Model.—Anomalous superdiffusion that originates from

a persistent motion or a long jump has been studied for
chaotic dynamical systems [29,30]. To study a response to
a bias in deterministic superdiffusions related to Lévy
walks, we propose an asymmetric deterministic diffusion
model, constructed by introducing an asymmetry in the
Geisel model [29]. In particular, we consider the following
map T:R ! R,

xnþ1 ¼ TðxnÞ; (1)

which have a translational symmetry ðL ¼ ZÞ
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Tðxþ LÞ ¼ TðxÞ þ L; (2)

and the map TðxÞ is given by

TðxÞ ¼
8><
>:
ðx�LÞ þ

�
x�L
c

�
z þL� 1; x2 ½L;Lþ cÞ;

ðx�LÞ �
�
L�x
1�c

�
z þLþ 1; x2 ½Lþ c� 1; LÞ;

(3)

where c is a parameter characterizing an asymmetry. This
model corresponds to a Lévy walk where leftward and
rightward persistent time distributions have the same scal-

ing exponent, i.e., c ðtÞ / t�z=ðz�1Þ but the probabilities of
the leftward and rightward walk are different.

Reduced map.—As can be seen in Fig. 1, points near the
fixed points, x ¼ 0 and x ¼ 1, on [0, 1] move to the left
neighboring cell or the right neighboring cell, respectively.
By translational symmetry, we can reduce an orbit of the
map TðxÞ to that of an intermittent map on [0,1] (Fig. 1).
For example, we can obtain the following reduced map,

RðxÞ ¼
8><
>:
xþ

�
x
c

�
z
; mod 1 x � c;

x�
�
1�x
1�c

�
z
; mod 1 x > c;

(4)

with 0< c< 1. The invariant density of the reduced map is
given by

�ðxÞ ¼ hðxÞx1�zð1� xÞ1�z; (5)

where hðxÞ is a continuous function satisfying hð0Þ � 0
and hð1Þ � 0 [31]. Thus, the invariant density cannot be
normalized for z � 2. Consider the observation function

fðxÞ ¼
8><
>:
�1; x 2 ½0; c1Þ;
0; x 2 ½c1; c2Þ;
þ1; x 2 ½c2; 1Þ;

(6)

where Rðc1Þ ¼ 1ðc1 < cÞ and Rðc2Þ ¼ 0ðc2 > cÞ. It fol-
lows that Xn ¼ fðx1Þ þ . . .þ fðxnÞ is regarded as a
one-dimensional random walk, where xn ¼ Rnðx0Þ. The
random walk Xn corresponds to a Lévy walk where the

persistent times distribution obeys a power law with ex-
ponent � ¼ z=ðz� 1Þ.
Dependence of EAMSD on ensemble.—Ensemble-

averaged MSD (EAMSD) and TAMSD are defined by

hx2mi ¼ lim
K!1

1

K

XK�1

k¼0

ðTmðxkÞ � xkÞ2; (7)

where xk is the kth initial point, and

�x2m ¼ lim
n!1

1

n

Xn�1

k¼0

fmðxkÞ; (8)

where fmðxÞ ¼ ðTmðxÞ � xÞ2, respectively. For a finite in-
variant measure ðz < 2Þ, ergodicity holds, i.e., EAMSD ¼
TAMSD if initial points are distributed according to the
invariant density of the reduced map. We note that ergo-
dicity in an infinite measure space holds whereas ergodic-
ity in the sense of time average being equal to the ensemble
average does not hold for z � 2. When the invariant mea-
sure is infinite one, an equilibrium ensemble cannot be
reproduced. The impossibility to reproduce an equilibrium
ensemble leads to aging [32]. In unbiased cases (c ¼ 0:5),
EAMSD is studied by the renewal theory and continuous
time random walk [29,33]:

hx2miE /

8>>>><
>>>>:

m2; z � 2;

m3�1=ðz�1Þ; 3
2 < z < 2;

m lnm; z ¼ 3
2;

m; 1< z < 3
2:

(9)

For c < 0:5, drifting motion arises in a direction toward
the right.
Unlike hyperbolic maps, statistical quantities deter-

mined by ensemble averages significantly depend on an
initial ensemble in intermittent maps. In particular, it is
shown that the behavior of the correlation function and the
power spectrum density depend on an initial ensemble
[34]. In renewal theory [35], there are two well-known
processes, i.e., ordinary renewal and equilibrium renewal
process. An initial ensemble corresponding to a specific
renewal process is reproducible in dynamical systems. In
particular, an initial ensemble for an equilibrium renewal
process is an absolutely continuous invariant measure.
Figure 2 shows that the EAMSD depends on an initial
ensemble. If an initial ensemble of EAMSD has an invari-
ant density (as in an equilibrium ensemble), all TAMSDs
are equal to EAMSD (see Fig. 2).
Lamperti-Thaler’s generalized arcsine law.—In dichot-

omous stochastic processes �n, an observable determined
by the time average of an observation function gð�nÞ is
known to show random behavior if the mean residence
time of a state diverges. In particular, the ratio of the
occupation time of a state, Nn=n, does not converge to a
constant, but converges in distribution, where Nn is the
occupation time of a state up to time n. The most classical
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FIG. 1 (color online). (a) Asymmetric deterministic diffusion
TðxÞ (z ¼ 3:0 and c ¼ 0:35). (b) Its reduced map RðxÞ.
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example is the arcsine law in coin tossing: the distribution
of the ratio of the period that a player is on the positive side
converges to the arcsine distribution [36]. Lamperti
showed that the distribution of the ratio of the occupation
time of a state converges to the generalized arcsine distri-
bution in general dichotomous stochastic processes [37]. In
Lévy walk, a position of a random walker at time n is given
by xn ¼ 2Nn � n, where Nn is the occupation time of
rightward walks up to time n. Therefore, the generalized
arcsine distribution appears naturally in superdiffusions
[38]. Moreover, the distribution becomes asymmetric if
the mean of Nn=n is not equal to 1=2 [37]. In other words,
a bias in superdiffusion generates such asymmetry.

In a dynamical system, the divergence of the mean
residence time implies that the invariant density cannot
be normalized [39]. Thaler has shown that the distribution
of the time average of a characteristic function converges
to the generalized arcsine distribution [10–12]. The gener-
alized arcsine law is valid for the time average of a
non-L1ð�Þ function, i.e.,

R jgjd� ¼ 1 [13]. Lamperti-
Thaler’s generalized arcsine (LTGA) law [11] states that
for a map S:½0; 1� ! ½0; 1� satisfying (i) Sð½0; c�Þ ¼ ½0; 1�
and Sð½c; 1�Þ ¼ ½0; 1�, (ii) S0ðxÞ> 1 on ð0; c� [ ½c; 1Þ;
S0ð0Þ ¼ S0ð1Þ ¼ 1, and (iii) SðxÞ � x� a0x

pþ1ðx ! 0Þ
and x� SðxÞ � a1ð1� xÞpþ1ðx ! 1Þ with p > 1 and con-
stants a0, a1 > 0, and c 2 ð0; 1Þ, the time average of the
L1
loc;�ð0; 1Þ function with finite mean [13] gðxÞ converges in

distribution:

Pr

�
1

n

Xn�1

k¼0

g � Sk � t

�
!

8>><
>>:
G�;�

�
t�b
a�b

�
ða > bÞ

1�G�;�

�
t�b
a�b

�
ða < bÞ;

(10)

where gð0Þ ¼ a, gð1Þ ¼ b, and � ¼ 1=p,

� ¼ S0ðcþÞ
ða0=a1Þ1=pS0ðc�Þ

; (11)

and the probability density function (PDF) is given by

G0
�;�ðtÞ¼

�sin�

�

t��1ð1� tÞ��1

�2t2�þ2�t�ð1� tÞ�cos��þð1� tÞ2� :
(12)

The parameter � characterizes an asymmetry of the PDF.
This distribution is called the generalized arcsine distribu-
tion, which emerges in a subdiffusive transport [40] and
weakly nonergodic statistical physics [8,41]. The mean of
the occupation fraction of rightward walks (xk > c),
hNn=ni, is given by hNn=ni ¼ 1=ð1þ �Þ. Thus, � � 1
corresponds to a biased superdiffusion. We note that the
exponents � and � are determined by a behavior near the
indifferent fixed points.
Distributional response to a bias.—LTGA law cannot be

applied to the reduced map of the asymmetric deterministic
diffusion model with z � 2 straightforwardly because the
reducedmap does not satisfy the condition (i). However, the
condition (i) is not crucial because an important point in
LTGA law is the reinjection to the indifferent fixed points.
In fact, the conditions (i), (ii), and (iii) in [11] was general-
ized in [12]. The reinjection to the fixed point x ¼ 0 is
determined by limx!c1þ0R

0ðxÞ and limx!c2þ0R
0ðxÞ.

Moreover, the reinjection to the fixed point x ¼ 1 is deter-
mined by limx!c1�0R

0ðxÞ and limx!c2�0R
0ðxÞ. Because of

limx!c1þ0R
0ðxÞ ¼ limx!c1�0R

0ðxÞ, limx!c2þ0R
0ðxÞ ¼

limx!c2�0R
0ðxÞ, and R0ðxÞ> 1 on ð0; c1� [ ½c1; c2� [

½c2; 1Þ, the way of a reinjection to x ¼ 0 and x ¼ 1 is the
same. Because the behavior near the indifferent fixed points
is given by SðxÞ � x� ðx=cÞzðx ! 0Þ and x� SðxÞ �
fð1� xÞ=ð1� cÞgzðx ! 1Þ, we can apply LTGA law to
the reduced map RðxÞ. Then, the exponents � and � are
given by
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FIG. 2 (color online). Mean square displacements (z ¼ 1:9
and c ¼ 0:5). Different symbols are the TAMSDs calculated
by different initial points. Dashed and dotted lines are the
EAMSDs based on equilibrium and ordinary ensembles, respec-
tively, where an ordinary ensemble is a uniform ensemble
on [0, 1] and an equilibrium ensemble is the points after 106

times iterations. The slope of the solid line is the theoretical
scaling (9).
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FIG. 3 (color online). Time-averaged drift (z ¼ 3:0, c ¼ 0:45,
and n ¼ 105). TADs are calculated by different initial points.
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� ¼ 1

z� 1
and � ¼

�
c

1� c

�
z=z�1

: (13)

First, we consider TAMSD, where the observation func-
tion fmðxÞ is the L1

loc;�ð0; 1Þ function with finite mean [13].

By LTGA law, fmð0Þ ¼ m2 and fmð1Þ ¼ m2, TAMSD

converges to m2: �x2m ¼ m2 for all c and z � 2. We note

that the ballistic behavior, �x2m ¼ m2, is not due to a drift
for c ¼ 0:5. Next, we consider the time-averaged drift
(TAD) defined by the time average of vmðxÞ ¼ TmðxÞ � x:

�xm ¼ lim
n!1

1

n

Xn�1

k¼0

vmðxkÞ; (14)

which is also the L1
loc;�ð0; 1Þ function with finite mean.

Figure 3 shows TADs obtained from different trajectories.
By LTGA law, vmð0Þ ¼ �m and vmð1Þ ¼ m, we have

Prf�xm=m � tg ! 1�G�;�

�
tþ 1

2

�
: (15)

This distributional limit theorem states that the time-

averaged velocity, defined by �V � �xm=m, under a bias
is intrinsically random, i.e., distributional response.
Numerical simulations are in good agreement with the
theory (see Fig. 4). Because the ensemble average of �V is

given by h �Vi ¼ h2Nn�n
n i, we have

V � h �ViF ¼ 1� �

1þ �
; (16)

where h�iF is the ensemble average under an external bias.
Figure 5 shows the response of V to a bias c.

Generalized Einstein relation.—The asymmetric pa-
rameter c with 0< c< 1 is considered to be the probabil-
ity of leftward walk if a persistent motion is terminated.

Let c ¼ e�ðF=kTÞ=ðe�ðF=kTÞ þ eF=kTÞ be the leftward walk

probability, where F is an external force, T is a tempera-
ture, and k is the Boltzmann constant [28]. We consider a
small bias, c ffi 1=2� F=kT for F ! 0. Expanding �
around c ¼ 1=2 and substituting it into V, we obtain the
linear response of V to a bias F:

V � 2
z

z� 1

F

kT
: (17)

Although TADs are intrinsically random, the TAMSDs
are not random and grow as m2 for z � 2. Therefore, we
have the following generalized Einstein relation for super-
diffusion:

h�xmiF � 2
z

z� 1

F

kT

ffiffiffiffiffiffiffiffiffi
�x2m

q
: (18)

We note that TAMSD is calculated under no bias while the
ensemble-averaged TAD is obtained under a bias.
Discussion.—We have found a distributional response in

deterministic superdiffusion using the distributional limit
theorem in infinite ergodic theory. The asymmetry parame-
ter c generates an asymmetry in the PDF of the time-
averaged velocity. In Lévy walk, an asymmetry property
is affected by not only the probability of the jump direction
but also the velocity. In a recent study we obtained a
generalized Einstein relation for single trajectories using
Hopf’s ergodic theorem [27]. However, this theorem does
not work in deterministic superdiffusion because the ob-
servation function vmðxÞ is not an L1ð�Þ function.
Therefore, a distributional response is essential in
superdiffusion. Moreover, we noted that the generalized
Einstein relation (18) is different from that in anomalous
diffusion [28]. We hope that our finding, i.e., the distribu-
tional response, will be observed in experiments of random
time-averaged observables.
The author thanks Tomoshige Miyaguchi for discus-
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