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We calculate for the first time the complex potential between a heavy quark and antiquark at finite

temperature across the deconfinement transition in lattice QCD. The real and imaginary part of the

potential at each separation distance r is obtained from the spectral function of the thermal Wilson loop.

We confirm the existence of an imaginary part above the critical temperature TC, which grows as a

function of r and underscores the importance of collisions with the gluonic environment for the melting of

heavy quarkonia in the quark-gluon plasma.
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Heavy-quark bound states (Q �Q) are essential tools in the
experimental and theoretical investigation of the high tem-
perature state of QCD matter, the quark-gluon plasma
(QGP) [1]. In particular, the suppression of heavy quarko-
nia such as J=c (the ground state of c �c in the vector
channel) in relativistic heavy-ion collision experiments at
the Relativistic Heavy Ion Collider [2] and at the Large
Hadron Collider [3] provides us with an intriguing signal
of the QGP.

In order to extract the physics of the QGP from heavy
quarkonia, an intuitive as well as quantitative understand-
ing of the involved physics is necessary: In the classic
approach of using a Schrödinger equation with a phenome-
nological Q �Q potential, Debye screening of color charges
is responsible for the melting ofQ �Q bound states above the
deconfinement temperature TC [4]. A perturbative evalu-
ation of the thermal Wilson loop using the hard-thermal-
loop resummation technique shows that the static potential
at high temperature has an imaginary part induced by
Landau damping [5,6]. An approach based on heavy-quark
effective field theory at finite temperature indicates an
additional contribution to the imaginary part of the static
potential [7]. In addition, lattice QCD simulations of the
spectral function of charmonia at finite temperature show
that J=c may survive even up to 1:5TC [8]. However, the
connection among the different approaches is not yet
clearly understood.

The main purpose of this Letter is to unify the
approach based on the nonrelativistic Schrödinger equa-
tion and that based on a spectral decomposition of the
Q �Q correlator. Utilizing lattice QCD simulations of the
medium surrounding the Q �Q, we extract a nonperturba-
tive potential at any temperature, especially in the
phenomenologically important and hitherto inaccessible
region around TC.

The starting point for deriving the effective Schrödinger
equation at finite T is the real-time forward Q �Q correlator
(t > 0) [5]

D>ðr; tÞ ¼ hMðx; y; tÞMyðx; y; 0Þi; (1)

whereMðx; y; tÞ ¼ �Qðx; tÞ�U½x; y�Qðy; tÞ with � denoting
gamma matrices (� ¼ �� for J=c ) and U½x; y� being a
straight Wilson line connecting ðx; tÞ and ðy; tÞ. The rela-
tive coordinate is defined as r ¼ x� y. The angular brack-
ets imply the thermal average. In the nonrelativistic limit,
where the heavy-quark mass mQ is much larger than any

other scale of the system, one may rewrite Eq. (1) in terms
of a path integral over the positions and momenta of the
heavy quarks:

D>
NRðr; tÞ /

Z
D½z1; z2;p1;p2�

� exp

�
i
Z t

0
ds

X
j¼1;2

�
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p2
j ðsÞ
2mQ

��
W�

(2)

with the Wilson loop W� ¼ hexp½�ig
R
� dx�A

�ðxÞ�i.
Here � denotes a closed loop in Minkowski space-time,
defined by the path of the quark and antiquark. This
formula is a finite temperature generalization of the result
in Ref. [9] and is valid up to Oð1=mQÞ.
From here on, we focus on the leading part of the

potential, obtained in the heavy-quark limit mQ ! 1. In

this case, it is enough to consider a rectangular path for the
Wilson loop W� ! Whðr ¼ jz1 � z2j; tÞ with a Fourier
decomposition:

Whðr; tÞ ¼
Z þ1

�1
d!e�i!t�hðr;!Þ: (3)

Equation (1) for mQ ! 1 also has a spectral decomposi-

tion composed of three parts, �loop, �staple, and �handle: One

can show that �hðr; !Þ in Eq. (3) corresponds to �loop and

is positive semidefinite for all r and ! [10].
Through Eq. (3), we are led to the following nonpertur-

bative definition of the in-medium potential:
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i@tWhðr; tÞ
Whðr; tÞ

¼
R
d!!e�i!t�hðr; !ÞR
d!e�i!t�hðr; !Þ � Vhðr; tÞ: (4)

Indeed, the solution of Eq. (4) yields the transfer matrix
compatible relation Whðr; tÞ ¼ exp½�i

R
t
0 Vhðr; sÞds� and

thus leads to an in-medium Schrödinger equation

i@tD
>
NRðr; tÞ ¼

�
� r2

r

mQ

þ Vhðr; tÞ
�
D>

NRðr; tÞ: (5)

In the following, we study the peaks of the spectral
function in Eq. (4) around ! ¼ 0, since it is the physics
at late times t that determines the potential. Based on
Eq. (4), the real part of the potential is thus given by the
peak position, whereas the imaginary part is related to the
peak width: For example, if �hðr;!Þ exhibits a Breit-
Wigner peak with position !0ðrÞ and width �0ðrÞ, we

obtain Vhðr; tÞ ! VðBWÞðrÞ ¼ !0ðrÞ þ i�0ðrÞ, while if it

contains a single Gaussian peak, we have Vhðr; tÞ !
VðGÞðr; tÞ ¼ !0ðrÞ þ i�2

0ðrÞt.
A nonperturbative method to determine �hðr;!Þ and

hence Vhðr; tÞ for all T is based on lattice QCD simula-
tions. We first make an analytic continuation of Eq. (3) to
imaginary time and connect the Euclidean thermal Wilson
loop to the spectral function through the Laplace trans-
form: WE

hðr; �Þ ¼
R
d!e�!��hðr; !Þ. This quantity is

purely real and not symmetric under the reflection � $
�� � by definition. As shown in Ref. [10], �hðr; !Þ in a
finite volume allows for a spectral decomposition in terms
of delta-function peaks:

�hðr; !Þ ¼ X
n;n0

PnðTÞjAn;n0 ðrÞj2�ð!� EQ �Q
n0 ðrÞ þ EnÞ: (6)

Here En is the energy eigenvalue of a state jniwithoutQ �Q,

while EQ �Q
n0 ðrÞ is the eigenvalue (relative to 2mQ) of a state

jn0; ri including a Q �Q separated by a distance r. The
matrix element and the Boltzmann factor are defined as

Ann0 ðrÞ�
P

yhnjMðyþr;y; t¼ 0Þjn0i and PnðTÞ � e�En=T=

½Pne
�En=T�, respectively. The peak positions of Eq. (6) do

not depend on T [since En and E
Q �Q
n0 ðrÞ are T-independent],

while the pole residues PnðTÞjAn;n0 ðrÞj2 depend on T due to

the Boltzmann factor. The various possible combinations
of n0 and n in �hðr;!Þ at finite T lead to a number of peaks
as large as N � N, if �hðr; !Þ at T ¼ 0 has N peaks.

The position and width of a physical resonance in an
infinite volume are obtained from the envelope of a bunch
of delta-function peaks in Eq. (6). A suitable technique to
extract such envelopes from lattice QCD data of WE

hðr; �Þ
is the maximum entropy method (MEM) [11]. In this
Letter, we utilize a high precision MEM with an extended
search space developed by one of the present authors [12].
By separating the size of the search space from the number
of data points, it allows a consistent comparison of spectra

even if the temporal extent of the underlying lattice is
changed.
The stability of the position and width of the resonance

reconstructed by the MEM can be checked through chang-
ing the amplitude of the prior and by increasing the number
of temporal data points [11]. In addition, the effect of a
discrete lattice spectrum on the position and width of the
resonance can be checked by controlling the number of
peaks and their relative separation under the variation of
the lattice spacing a and the lattice size L (see, e.g., [13]
for the variation of a).
We perform quenched lattice QCD simulations of

WE
hðr; �Þ by using the simple plaquette gauge action on

an anisotropic 203 � N� lattice. The anisotropy ratio be-
tween the spatial and temporal lattice spacing is taken to be
� � a�=a� ¼ 4. We fix a� to be 0:097 fm (� ¼ 6:1) and
adopt the temporal lattice sizes N� ¼ 36; 24; 12 which
correspond to temperatures T=TC ¼ 0:78; 1:17; 2:33 with
TC ’ 290 MeV [14]. Our spatial lattice size L� 2 fm can
accommodate the characteristic J=c scale of rJ=c �
0:5 fm. After collecting the lattice data, we carry out the
MEM over a frequency interval I! ¼ ½!min; !max� of
N! ¼ 1500 points. Our choice corresponds to I! ’
½�21 GeV; 42 GeV� at N� ¼ 24. We use a prior distribu-
tion of the form mð!Þ ¼ 1

!þ!0
, motivated by the canonical

dimension of �hðr;!Þ. The parameter !0ð>0Þ is fixed
by setting the amplitude m0 ¼ mð!minÞ at the smallest
frequency in I!.
In Fig. 1 (left), we plot typical Wilson-loop data as a

function of � for various distances r at T ¼ 1:17TC.
Spectral functions obtained by the MEM at r ¼ a� ’
0:1 fm and r ¼ 4a� ’ 0:39 fm are plotted in Fig. 1 (right).
The falloff ofWE

hðr; �Þ for small and intermediate values of

� in the left figure corresponds to the peaks located in the
!> 0 region seen in the right figure: They arise from
gluonic interactions between the temporal Wilson lines.
The upward trend of WE

hð�; rÞ around � ¼ �, on the other

hand, is induced by extremely small structures located in
the !< 0 region: These arise from short distance gluon
interactions connecting the spatial Wilson lines across the
compactified temporal axis. Although the spectral function
in the negative ! region is important for reproducing
WE

hðr; �� �Þ due to its exponential ‘‘enhancement’’ by

the Laplace transform, its effect on Vhðr; tÞ in Eq. (4) is
negligible due to its extremely small residue.
The real and imaginary parts of the potential are

obtained from fitting the lowest lying peak with a Breit-
Wigner and Gaussian shape. The identical results for po-
sition and width are shown in Fig. 2 (left) and (right),
respectively. The error bars are obtained from the variance
in the peak structure between different choices for the
amplitude of the prior distribution. The interval of 10�2 �
m0 � 10�6 is chosen to span as many orders without
introducing numerical instabilities in the minimization
process. We have checked that the standard MEM error,
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estimated from the stability of the spectral function given
m0 [11], is much smaller than the error from the variation
of m0.

T ¼ 0:78TC: Re½VhðrÞ� denoted by the filled squares in
Fig. 2 (left) is found to show a linearly rising potential at
long distances, a result consistent with quark confinement
below TC. To study the short distance behavior of the
potential, we have also carried out simulations with a 2.5
times smaller lattice spacing (� ¼ 7, � ¼ 4, a� ¼
0:039 fm, 203 � 96) at the same T=TC; the resulting
Re½VhðrÞ� can be fitted well by a Coulombþ linear po-
tential [15]. Furthermore, our results agree with the color-
singlet free energies F1ðrÞ in the Coulomb gauge (solid
black line in the left panel) at all measured distances r.
Note that �hðrÞ appears to be small and is consistent with
zero within the statistical and systematic errors; see the
filled squares in Fig. 2 (right).

T ¼ 1:12TC: At this temperature, Re½VhðrÞ� has appar-
ently frozen at around the same strength found at

T ¼ 0:78TC, as shown by the filled circles in the left panel.
This is in contrast to the behavior of F1ðrÞ at the same T
(the long dashed curve in the left panel) which exhibits a
significant thermal screening. As for �hðrÞ, there is a
tendency to develop a nonzero value, which grows as r
increases; see the filled circles in the right panel.
T ¼ 2:33TC: At the highest available temperature,

Re½VhðrÞ� and �hðrÞ exhibit a strong rise as a function
of r, shown by the filled triangles. To test the effects of a
small number of temporal data points N� [11] and also
whether the discrete lattice spectrum [13] might blur the
MEM image and thus might lead to an artificial broad peak,
we compare the results of (� ¼ 6:1, a� ¼ 0:097 fm,
203 � 12) and those of (� ¼ 7, � ¼ 4, a� ¼ 0:039 fm,
203 � 32): The latter has more temporal data points;
hence, it has finer (coarser) resolution at low (high) fre-
quency. The results shown by solid diamonds in Fig. 2
(left) and (right) are consistent with the solid triangles.
This cross-check indicates that the width broadening
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FIG. 2 (color online). (Left) The real part of the in-medium heavy-quark potential for three different temperatures across TC with
a� ¼ 0:0971 fm (solid squares, circles, and triangles). Solid and dashed lines are the color-singlet free energies F1ðrÞ in the Coulomb
gauge at corresponding temperatures. The result for the finer lattice (a� ¼ 0:039 fm at T=TC ¼ 2:33) is also shown for comparison
(solid diamonds). (Right) The imaginary part of the potential, obtained from the width of the lowest lying peak of the spectral function.
The same symbols are used as the left figure.
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observed from the MEM is a physical effect [16]. We need,
however, further systematic studies to confirm this point by
changing N�, a, and L independently.

Although we construct our potential by starting from the
mesonic operator Mðx; y; tÞ with a straight Wilson line in
Eq. (1), one has the freedom to choose the operator M
differently and, hence, the forward correlator D> and the
potential V. On the other hand, observable quantities, such
as the dilepton emission rate, must be independent of such
differences [17]. Therefore, there must be a trade-off
between the real and the imaginary part of the potential
to leave the observables unchanged. To study this point, we
consider an operator M with U½x; y� ¼ 1 in the Coulomb
gauge. In this case, we have ‘‘Wilson lines’’ without the
spatial link Wjjðr; tÞ. In Fig. 3, we show the real and

imaginary parts of the potential (Vjj) obtained from

WE
jj ðr; �Þ. In the confinement phase below TC, Vjj and Vh

agree quite well. On the other hand, in the deconfinement
phase, both Re½VjjðrÞ� and �jjðrÞ exhibit a less pronounced
rise in r. We observe that a weaker real part is accompanied
by a weaker spectral width, which could be a sign of the
trade-off mentioned above. This mechanism has to be
made quantitative in future studies by solving the time-
dependent Schrödinger equation for an initial Q �Q wave
packet entering the QGP.

We have presented a nonperturbative derivation of the
Schrödinger equation for heavy quarkonia and a first evalu-
ation of the corresponding complex in-medium potential,
based on quenched lattice QCD. Our numerical results
show that, even though the potential agrees with the
color-singlet free energies below the phase transition, the
correct physics above TC can be obtained only if the real
and imaginary parts are taken into account together. The
temperature-insensitive real part around TC suggests fur-
thermore that the growth of the imaginary part, i.e., an
increasing number of collisions with the medium, may play
a more important role to destabilizeQ �Q than the screening
effects [18]. We have also discussed a possible mechanism

to obtain the relevant physics independent of a particular
choice of the underlying operator by balancing the real and
imaginary parts. Our complex potential opens up new
possibilities to study the dynamics of the QGP transition
by providing first-principles input to nonrelativistic real-
time simulations, going beyond both models and perturba-
tion theory.
Our ongoing work aims at full QCD simulations with

dynamical fermions, since these additional degrees of free-
dom may affect both the real and imaginary parts of the
complex potential substantially. In addition, larger and
finer lattices are needed in order to assess the relative
significance of Debye screening vs the collisional effects
from short distance to long distance in more detail.
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