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So far it has been shown that the quantum dynamics cannot be described as a classical Markov process

unless the number of classical states is uncountably infinite. In this Letter, we present a stochastic model

with time-correlated noise that exactly reproduces any unitary evolution of a qubit and requires just four

classical states. The invasive updating of only 1 bit during a measurement accounts for the quantum

violation of the Leggett-Garg inequalities. Unlike in a pilot-wave theory, the stochastic forces governing

the jumps among the four states do not depend on the quantum state but only on the unitary evolution. This

model is used to derive a local hidden variable model, augmented by 1 bit of classical communication, for

simulating entangled Bell states.
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It is a well-established fact that the quantum dynamics
among a finite set of mutually exclusive alternatives (like
the up and down states of a 1=2 spin) cannot be reduced to a
Markov process among a finite set of classical states.
Indeed a time-homogeneous Markov process on a finite
space always relaxes into a stationary probability distribu-
tion, as a consequence of the Perron-Frobenius theorem
[1]. The impossibility of exactly simulating a quantum
system through a Markov process on a finite classical space
is also a consequence of a theorem proved in Ref. [2].
There we showed that the dimension of the classical space
cannot be smaller than the quantum state manifold dimen-
sion under the hypothesis of Markov dynamics; that is, the
classical space must be uncountably infinite. Pilot-wave
theories provide an example of this overflow of classical
resources. Indeed in their framework the dynamics among
the set of alternatives explicitly depends on the quantum
state, which actually turns to be part of the classical
description. Pilot-wave theories of finite-dimensional
quantum systems were considered, for example, in
Refs. [3,4]. While they reintroduce a classical realistic
picture of the quantum world, they are unavoidably char-
acterized by a feature that is absent in prequantum physics,
namely, the invasiveness of measurements. Thus, measure-
ments do not provide a mere updating of knowledge about
the actual state but intrinsically introduce a perturbation on
the system. In every known classical model of quantum
dynamics, this perturbation demands an invasive updating
of an uncountably infinite amount of information. For
example, in the case of a qubit, two continuous real vari-
ables need to be updated.

The Leggett-Garg inequalities provide a useful test for
deciding if a set of data can be explained by a
measurement-noninvasive classical theory [5]. Indeed
they are violated by quantum mechanics. These
inequalities are analogous to the Bell inequalities for the
Einstein-Podolsky-Rosen experiment [6] with the local

measurements being replaced by two consecutive measure-
ments on a two-state quantum oscillator. This analogy
suggests an interesting question. On the one hand, the
violation of the Leggett-Garg inequalities demands the
invasiveness of measurements in any classical theory of
two-state quantum oscillators. On the other hand, the vio-
lation of the Bell inequality implies that a classical simu-
lation of Bell correlations requires some communication
between the parties. It is known that a finite amount of
classical communication, namely, 1 bit, can actually ac-
count for this violation [7]. Thus it is natural to wonder if it
is possible to simulate the quantum dynamics by a classical
model that needs the invasive updating of a finite amount of
information.
Generalizing the case discussed in Ref. [5], in this Letter

we consider the scenario where two consecutive measure-
ments of the same observable are performed, at times t0
and t1 > t0, on a qubit undergoing a generic unitary evo-
lution. The outcome of each measurement is one of two
orthogonal states, denoted by j � 1i. They can be, for
example, the left and right states of a double-well system
[5]. We show that this scenario can be classically simulated
by a two-bit classical model with time-correlated noise.
The key ingredients of our model are time correlation of
the noise and minimal measurement invasiveness. The first
ingredient is required for circumventing the constraint on
the classical space dimension proved in Ref. [2], as this
constraint does not hold for non-Markov processes. The
second ingredient accounts for the invasiveness of mea-
surements by demanding that only 1 bit is invasively
updated. Unlike in a pilot-wave theory, the noise governing
the dynamics is independent of the measurement times t0
and t1 and depends only on the unitary evolution. In
particular, the noise is independent of the quantum state.
This feature and the finite number of classical states dis-
tinguish our result from the previous ones, such as the class
of hidden variable theories considered in Ref. [3], where
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the stochastic matrices are supposed to depend on the
quantum state. At first glance, the finiteness of the classical
space seems paradoxical since the quantum state space is
infinite. Indeed, the quantum information is not encoded
into the classical state of a single execution but into the
statistical behavior of many executions.

Like in a pilot-wave theory, in the presented model the
system is supposed to be, at any instant, definitely in one of
the two orthogonal states j � 1i. More precisely, the model
contains a two-value discrete index s ¼ �1 that deter-
mines the outcome of a measurement on the basis
fj � 1i; j1ig. If at some time the index s is equal to some
value s0 and a measurement is performed, then the out-
come is js0i. Furthermore, the measurement does not
change the subsequent value of the index s. The role of s
is similar to the role played by the position variables in the
de Broglie–Bohm mechanics. To derive the stochastic
model, we first introduce a simple measurement-
noninvasive model that captures some features of a qubit.
The qubit is described by just the bit s that is kicked by a
time-correlated noise depending on the unitary evolution
(first ingredient). Since this model is measurement-
noninvasive, it satisfies the Leggett-Garg inequalities and
it is not equivalent to quantum mechanics. We then modify
the model by introducing another bit that is invasively
updated by the measurements (second ingredient). The
dynamics of s is ruled by both the noise and the additional
bit. It is shown that this minimal improvement is sufficient
for exactly reproducing the quantum transition between
two consecutive measurements.

It is useful to represent the quantum states by Bloch
vectors. The unitary evolution is described by a rotation on
the Bloch sphere. We denote by Rðta; tbÞ the rotation
operator along any time interval ½ta; tb� and by vectors
� ~n the states j � 1i. The quantum probability of having
js1i at time t1, given js0i at time t0, is

PQðs1; t1js0; t0Þ ¼ 1
2½1þ s1s0 ~n � ~v�; (1)

~v � Rðt0; t1Þ ~n: (2)

Let us introduce the measurement-noninvasive model.
First, we define the noise and the rule governing the jumps
of s. Then, we derive the transition probability of s along a
time interval. The noise variable is a unit vector ~xðtÞ that is
a function of time. We denote by �½ ~xðtÞ� the marginal
probability distribution of ~xðtÞ at time t and by �ð ~xÞ the
probability distribution of the function ~x [i.e., �ð ~xÞ is a
functional]. The statistical distribution of the noise,
namely, �ð ~xÞ, is defined by the equations

�½ ~xðtaÞ� ¼ ð4�Þ�1; (3)

~xðtbÞ ¼ Rðta; tbÞ ~xðtaÞ (4)

for any ta and tb. The first equation gives the marginal
probability distribution of ~xðtaÞ at time ta. The second

equation establishes a deterministic relation between the
value of the noise variable at different times. The proce-
dure for generating each realization of the noise is as
follows. First, we generate a random vector ~xðtaÞ at some
time ta according to Eq. (3). Then, we determine ~xðtÞ at any
time by using Eq. (4). The noise is clearly time-correlated;
that is, the correlation function hxiðtaÞxjðtbÞi is not equal to
zero for ta � tb. Given the noise function ~xðtÞ, we need a
rule for the dynamics of sðtÞ. We employ the simplest
deterministic rule by assuming that the index sðtÞ under-
goes a jump whenever ~n � ~xðtÞ changes the sign, that is,
whenever ~xðtÞ crosses the geodesic of the Bloch sphere
lying on a plane orthogonal to ~n. Let us summarize the
noninvasive model.
Model 1.—Let the unit vector ~xðtÞ be a stochastic func-

tion of time, whose statistical property is given by Eqs. (3)
and (4). In eachMonteCarlo execution, the two-value index
sðtÞ undergoes a jump whenever ~xðtÞ � ~n changes the sign.
Thus, the Monte Carlo procedure for generating the

value of sðt1Þ ¼ s1 at time t1 given sðt0Þ ¼ s0 at time t0
is as follows. A noise function ~xðtÞ is generated according
to Eqs. (3) and (4). If the signs of ~xðt0Þ � ~n and ~xðt1Þ � ~n are
equal (even number of jumps), then s1 is set equal to s0;
otherwise, s1 is set equal to�s0. The procedure is repeated
for each realization.
Notice that all we need to know about the noise is the

real function �:t ! ~n � ~xðtÞ. In fact, we could just suppose
that � is the noise and regard ~x as an intermediary tool for
mapping each unitary evolution to a statistical distribution
of �, namely, for generating the map R ! �ð�Þ from the
function R:ta; tb ! Rðta; tbÞ to the probability distribution
(which is a functional) of the noise �. As with ~v and ~vðtÞ, if
not differently indicated, we denote by � the noise function
and by �ðtÞ its value at time t. Thus, Fð�Þ is meant as a
functional of the noise at every time and F½�ðtÞ� as a
function of the noise at time t. Notice that the process �
is not Markovian; that is, the marginal probability
�ð�cj�b; �aÞ of having �c ¼ �ðtcÞ at time tc given �b ¼
�ðtbÞ and �a ¼ �ðtaÞ at previous times tb and ta is not
equal, in general, to the marginal probability �ð�cj�bÞ.
Let us denote by P�ðs1; t1js0; t0Þ the transition probabil-

ity from s0 at time t0 to s1 at time t1, given a noise
realization �. The rules defining model 1 imply that
P�ðs1; t1js0; t0Þ � �½s1s0 ~n � ~xðt1Þ ~n � ~xðt0Þ�, � being the

Heaviside function. Using Eqs. (2) and (4), we have that

P�ðs1; t1js0; t0Þ ¼ �½s1s0 ~n � ~xðt1Þ ~v � ~xðt1Þ�: (5)

From Eq. (5) and the statistical distribution of ~xðt1Þ defined
by Eq. (3), we find, by the marginalization over ~xðt1Þ, that
the probability of the transition s0 ! s1 is

Pðs1; t1js0; t0Þ ¼ 1

4�

Z
d2x�½s1s0ð ~n � ~xÞð ~v � ~xÞ�

¼ 1� 1

�
arccosðs1s0 ~n � ~vÞ: (6)
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Thus, the model does not exactly reproduce the quantum
probability given by Eq. (1). For example, in the case of
Rabi oscillation between states j � 1i, the quantum proba-
bility is a cosine squared function of !ðt1 � t0Þ, ! being
the Rabi frequency. Conversely, the model presented here
gives a triangle function. In particular, for a small evolution
time the classical probability scales as t1 � t0, whereas the
quantum probability scales as ðt1 � t0Þ2. While the model
is not exact, it has the nice property of generating an
oscillatory dynamics, which a Markov process on a finite
set of states fails to give. This property is granted by the
time correlation of the noise.

Just as a local model satisfies the Bell inequalities, this
measurement-noninvasive model satisfies the Leggett-
Garg inequalities, which are violated by quantum systems.
To simulate exactly the quantum transition between two
measurements we need to introduce some additional vari-
able that is invasively updated by the first measurement.
We now present an exact model that uses just one addi-
tional bit, denoted by a discrete index rðtÞ, taking the
values �1. The model of a qubit is as follows.

Model 2.—Let the unit vectors ~x1ðtÞ and ~x�1ðtÞ be two
stochastic functions of time. They are statistically indepen-
dent, and the statistical property of each function is given
by Eqs. (3) and (4). The qubit is described by two indices
sðtÞ ¼ �1 and rðtÞ ¼ �1, which are functions of time t.
The index sðtÞ is directly measurable at any time and is not
modified by a measurement, whereas rðtÞ is invasively
updated. If a measurement of sðt0Þ � s0 is performed at
time t0, then the index rðt0Þ is set equal to

r0 ¼ sgnf½ ~x1ðt0Þ � ~n�2 � ½ ~x�1ðt0Þ � ~n�2g: (7)

The index rðtÞ remains constant after the measurement,
whereas sðtÞ undergoes a jump whenever ~xr0ðtÞ � ~n changes

the sign. A second measurement reveals the value of
sðt1Þ � s1 at time t1 > t0.

Like in the previous model, all we need to know about
the noise are the functions ��1:t ! ~n � ~x�1ðtÞ. In the fol-
lowing, we will denote by � the pair of noise functions ��1.
A schematic representation of the model for a particular
realization of the noise is given in Fig. 1. Notice in figure
that a measurement at time t0 sets r ¼ �1, since �2�1ðt0Þ>
�2
1ðt0Þ, in accordance with Eq. (7).
For each noise realization �, the probability of having

outcome s1 at time t1, given outcome s0 at time t0, is equal
to P�ðs1; t1js0; t0Þ ¼ �½s1s0 ~n � ~xr0ðt1Þ ~n � ~xr0ðt0Þ�, where r0
is given by Eq. (7). Thus, using Eqs. (2) and (4), we have
that

P�ðs1; t1js0; t0Þ � �½s1s0 ~n � ~xr0ðt1Þ ~v � ~xr0ðt1Þ�: (8)

Similarly, Eq. (7) can bewritten, throughEqs. (2) and (4), as

r0 ¼ sgnf½ ~x1ðt1Þ � ~v�2 � ½ ~x�1ðt1Þ � ~v�2g: (9)

Like in the previous model, the probability
Pðs1; t1js0; t0Þ for the transition from s0 at time t0 to s1 at

time t1 is obtained by averaging over the noise realizations.
Thus, from Eqs. (3), (8), and (9) we have that

Pðs1; t1js0; t0Þ ¼ 1

ð4�Þ2
X
r¼�1

Z
d2x1d

2x�1�ðs1s0 ~n � ~xr ~v � ~xrÞ

� �fr½ð ~x1 � ~vÞ2 � ð ~x�1 � ~vÞ2�g: (10)

Noting that the two terms in the sum over r give the same
contribution, it is not difficult to show that

Pðs1; t1js0; t0Þ ¼
Z

d2x�ðs1s0 ~n � ~x ~v � ~xÞIð ~v � ~xÞ (11)

with Ið�Þ � 1
8�2

R
d2y�½�2 � ð ~v � ~yÞ2� ¼ 1

2� j�j. This gives
the equation

Pðs1; t1js0; t0Þ ¼
Z

d2x�ðs0 ~n � ~xÞ�ksð ~x; s1 ~vÞ; (12)

where �ksð ~x; ~wÞ � 1
�
~w � ~x�ð ~w � ~xÞ is the probability distri-

bution associated with quantum state ~w in the Kochen-
Specker model [8]. The integral in Eq. (12) is well known
[8] and gives the quantum probability of having the state
s0 ~n, given the state s1 ~v and vice versa. Thus, we have
proved that

Pðs1; t1js0; t0Þ ¼ PQðs1; t1js0; t0Þ;
that is, the stochastic model exactly reproduces the quan-
tum transition between two measurements. Unlike in a
pilot-wave theory, the noise � does not depend on mea-
surement times t1 and t2. Thus, the noise value �ðtÞ at any
time t is independent of the quantum state at that time.
Indeed the information on the quantum state is encoded in
the correlation between ðs; rÞ and �.
There is a close relation between this model and some

results in quantum communication. Let us consider the
following Einstein-Podolsky-Rosen scenario [6]. Two spa-
tially separate parties, Alice and Bob, each receive one of
two maximally entangled qubits. Alice performs a local
projective measurement on the single-qubit basis
ð ~v1;� ~v1Þ, while Bob on the basis ð ~v0;� ~v0Þ. The two-
value indices s0 and s1 are defined so that Alice and
Bob’s outcoming states are the Bloch vectors �s1 ~v1 and

FIG. 1. Schematic representation of the 4-state model. During
a unitary evolution the index s undergoes jumps whenever �r

changes sign, whereas r remains constant. For example, if a
measurement is made at time t0 and r is set equal to �1, the
jumps occur at the filled circles.
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s0 ~v0, respectively. With a suitable choice of the reference
frame on the Bloch spheres, the joint probability distribu-
tion of s0 and s1 is Peðs0;s1j ~v0; ~v1Þ¼ 1

4½1þs0s1 ~v0 � ~v1�.
According to Bell’s theorem, a local hidden variable model
cannot reproduce this probability distribution, and some
post-measurement communication between the parties has
to be exchanged. How much communication is required?
In Ref. [9], it was shown that a finite amount of commu-
nication, namely, 8 bits, is sufficient for reproducing the
Bell correlations. This result was improved in Ref. [7],
where it was shown that an exact simulation demands a
communication of just 1 bit. An alternative model with
minimal communication was derived in Ref. [10] from the
Kochen-Specker model [8]. The common setting of a one-
way classical protocol for simulating entanglement is as
follows. Bob and Alice share a random variable X. Given
the measurement ð ~v0;� ~v0Þ, Bob generates the outcome s0
and an additional discrete index m according to a proba-
bility distribution that depends on ~v0 and the shared vari-
able X. Then he sends m to Alice. Alice generates the
outcome s1 of the measurement ð ~v1;� ~v1Þ with a proba-
bility that depends on both ~v1 and X and the communicated
index m. A stochastic model of quantum dynamics on a
finite classical space, such as that introduced in this Letter,
can be easily converted into a model of entanglement,
where the stochastic noise and the classical state play the
role of X and the communicated information, respectively.

Let us show that the stochastic model of qubit derived
here can be converted into the model of entanglement
reported in Ref. [10]. Suppose that at time t0 the qubit is
in the mixture 1

2 ðj1ih1j þ j � 1ih�1jÞ and a projective

measurement is performed on the basis ð ~n;� ~nÞ. The proba-
bility distribution of outcome s0 is �ðs0Þ ¼ 1

2 . Then the

qubit undergoes two consecutive unitary evolutions along
the time intervals ½t0; t� and ½t; t1�. At time t1 another
measurement on the basis ð ~n;� ~nÞ is made, and it gives
outcome s1. Each measurement at time ti, with i ¼ 1; 2, is
actually equivalent to a measurement on the basis ð ~vi;� ~viÞ
at the same time t, where ~vi � Rðti; tÞ ~n. Thus, we have that
the joint probability of s0 and s1 is formally equal to the
probability distribution Peðs0; s1j ~v0; ~v1Þ for two entangled
qubits in the Einstein-Podolsky-Rosen scenario. Indeed,
both the marginal distributions and the correlations of s0
and s1 are identically reproduced. From our stochastic
model we find that, given the vectors ~xiðtÞ � ~yi, the joint
probability distribution of ðs; rÞ at time t and outcome s0 at
time t0 is

PBðs0; s; rjy; ~vÞ ¼ 1
2�½ðs0 ~v � ~yrÞðs ~n � ~yrÞ��fr½ð ~v � ~y1Þ2
� ð ~v � ~y�1Þ2�g; (13)

where y � ð ~y1; ~y�1Þ. Similarly, we have that, given y and
ðs; rÞ, the probability of the outcome s1 at time t1 is

PAðs1js; r; y; ~v1Þ ¼ �½ðs ~n � ~yrÞðs1 ~v1 � ~yrÞ�: (14)

Finally, the joint probability of s0 and s1 is

Peðs0; s1j ~v0; ~v1Þ ¼
X
s;r

Z
d4yPAðs1js; r; y; ~v1Þ

� PBðs0; s; rjy; ~v0Þ�ðyÞ: (15)

These three equations give a model of entanglement where
y is the shared noise and ðs; rÞ the communicated bits.
Notice that ~n is just a free parameter of the model. It can
be eliminated by the transformation s ! s sgnð ~n � ~yrÞ.
Furthermore, the marginal probability distribution of s
after the transformation is uniform and independent from
~v. Thus, s can be included in the set of shared variables
and, indeed, incorporated in y. In this way we obtain a local
hidden variable model of entanglement, augmented by
1 bit of communication (namely, r), given by the condi-
tional probabilities

PBðs0; rjy; ~v0Þ ¼ �ðs0 ~v0 � ~yrÞ�fr½ð ~v0 � ~y1Þ2 � ð ~v0 � ~y�1Þ2�g;
PAðs1jr; y; ~v1Þ ¼ �ðs1 ~v1 � ~yrÞ:
This is the model derived in Ref. [10], set in a slightly
different form. The process can be reverted, and one can
obtain the stochastic model directly from the model of
entanglement.
In conclusion, we have presented a stochastic model

with time-correlated noise that exactly reproduces any
unitary evolution of a qubit by using just 4 classical states.
The time correlation of the noise allowed us to overcome
the constraint of the theorem proved in Ref. [2] on the
dimensionality of the classical space. A generalization to
higher-dimensional quantum systems can have some inter-
esting implications. First, it would automatically give a
local hidden variable model of entanglement, augmented
by a finite amount of one-way communication, for n Bell
states. Apart from some approximate protocols reported in
Ref. [10], such a model is at present missing. Second, this
generalization can suggest more efficient methods for
simulating the dynamics of high-dimensional quantum
systems. At first glance, this approach does not seem to
provide any computational benefit. Indeed, the evaluation
of each noise realization requires one to solve the
Schrödinger equation; thus, it is not less complicated
than directly solving the dynamics of the quantum state.
However, we have seen that only partial information about
the noise (in our model, the real functions �i) is actually
involved in the dynamics of the discrete indices. Thus, one
could envisage a computational strategy for computing,
exactly or with some approximation, this partial informa-
tion without passing through the Schrödinger equation.
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