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We theoretically analyze the temperature behavior of paraxial light in thermal equilibrium with a dye-

filled optical microcavity. At low temperatures the photon gas undergoes Bose-Einstein condensation, and

the photon number in the cavity ground state becomes macroscopic with respect to the total photon

number. Owing to a grand-canonical excitation exchange between the photon gas and the dye molecule

reservoir, a regime with unusually large fluctuations of the condensate number is predicted for this system

that is not observed in present atomic physics Bose-Einstein condensation experiments.
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For many problems in statistical physics, one has the
freedom of choice to use different statistical ensembles for
their description, as they often predict the same physical
behavior in the thermodynamic limit. An interesting coun-
terexample (among others) is Bose-Einstein condensation
[1,2], where the grand-canonical description leads to
unusually large condensate number fluctuations of the
order of the total particle number [3–6]—in contrast to
the predictions in the (micro)canonical case that is typi-
cally realized in experiments with ultracold atomic Bose
gases [7]. This peculiar behavior is known as the grand-
canonical fluctuation catastrophe [5,6]. In recent work,
we have observed Bose-Einstein condensation of a two-
dimensional photon gas in an optical microcavity [8,9].
Here, the transversal motional degrees of freedom of the
photons are thermally coupled to the cavity environment
by multiple absorption-fluorescence cycles in a dye
medium, with the latter serving as both a heat bath and
a particle reservoir. Because of particle exchange be-
tween the photon gas and the molecular reservoir, grand-
canonical experimental conditions are expected to be
realized in this system.

In this Letter, we discuss the thermalization mechanism
and derive statistical properties of the photon condensate,
including its photon number distribution, fluctuations, and
intensity correlations. The main result is that photonic
Bose-Einstein condensates, owing to the grand-canonical
nature of the light-matter thermalization, can show un-
usually large particle number fluctuations, which are not
observed in present atomic Bose-Einstein condensates.
Our calculations are done in the limit of a noninteracting
photon gas.

The system under investigation, as shown in Fig. 1(a),
consists of a microresonator formed by two perfectly
reflecting spherically curved mirrors enclosing a dye
medium. In the cavity, optical photons are permanently
absorbed and reemitted by dye molecules. For a suffi-
ciently small mirror spacing, this process will maintain
the longitudinal mode number of the photons denoted by
q; see [8–10] for a detailed description of the experiment.

The photon gas effectively becomes two-dimensional, as
only the two transversal degrees of freedom remain.
Throughout this Letter, we do not consider experimental
imperfections as mirror losses or nonradiative decay of
dye excitations. Moreover, we do not consider coherent
time evolution of the combined light-dye system (strong
coupling) which would result in polaritonic eigenstates.
Under the experimental conditions of Refs. [8,9], this
is inhibited by a rapid, collision-induced decoherence
process.
There is a close connection to the statistical physics

of the atomic two-dimensional Bose gas, which can be
seen by expressing the photon energy as a function of
the longitudinal (kz) and transversal wave number (kr):

E ¼ @~c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2r

q
, with ~c as the speed of light in the

medium. The boundary condition in the z direction is

incorporated by an ansatz kzðrÞ ¼ q�=DðrÞ, whereDðrÞ ¼
D0 � 2ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
Þ is the mirror separation at a

distance r from the optical axis and R is the radius of
curvature. In a paraxial approximation, with kr � kzð0Þ
and r � R, this yields [10]

E ’ m~c2 þ ð@krÞ2
2m

þm�2

2
r2; (1)

which is formally equivalent to the energy of a two-
dimensional harmonic oscillator when defining a photon

mass m ¼ @kzð0Þ=~c and a trapping frequency � ¼
~c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0R=2

p
. The photon gas can thus be mapped onto a

(2D) gas of massive bosons in a harmonic trap—a system
known to undergo Bose-Einstein condensation (BEC) at a
nonzero temperature [11,12].
Thermal equilibrium and condensation.—First we dis-

cuss the thermalization process in more detail. Thermal
equilibrium between photons and dye molecules will be
shown to arise under two conditions: (i) The Einstein
coefficients of the dye medium fulfill the Kennard-
Stepanov law, and (ii) chemical equilibrium between
photons, excited, and ground-state molecules is achieved.
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(i) The Kennard-Stepanov law [13,14] (and references
therein) relates the Einstein coefficients of stimulated
absorption and emission, and can be stated in the form

B21ð!Þ
B12ð!Þ ¼

w#
w"

e�@ð!�!0Þ=kBT; (2)

where B12;21ð!Þ are the Einstein coefficients of absorption

and emission, !0 is the zero-phonon line of the dye, and
w#;" ¼

R
��0 D#;"ð�Þ expð��=kBTÞd� are statistical weights

related to the rovibronic density of states D#;"ð�Þ of the
ground ( # ) and excited ( " ) dye state. This law is often
fulfilled for dyes in liquid solution and goes back to a
thermalization process of the rovibronic dye state due to
frequent collisions with solvent molecules [15].

(ii) The excitation exchange between photon gas and
molecules can be seen as a photochemical reaction of the
type �þ # ⇋ " . Here � stands for a photon, # for a ground-
state molecule, and " for an excited molecule. The energy
of optical photons is well above thermal energy at room
temperature, i.e., E � kBT, and the conversion of ground-
state molecules into excited molecules by thermal fluctua-
tions is thus negligible. In this situation, the total number of
photons and excited molecules is not adjusted by tempera-
ture as for blackbody radiation but is a conserved quantity
(it depends on the initial state of the photon gas and the
molecular medium). The chemical potential of the photons
�� then can become nonzero. In equilibrium,�� is related

to the other chemical potentials by �� þ�# ¼ �" [16].
Starting from this, the photon chemical potential�� can be

shown [15] to be related to the excitation level �"=�# in the
dye medium by

e��=kBT ¼ w#
w"

�"
�#

e@!0=kBT: (3)

Here �#;" are the densities of ground- and excited-state

molecules. The chemical potential �� is spatially homo-

geneous in equilibrium (as is the temperature), from which
follows that the excitation level of the medium �"=�# is
also position-independent.

The thermalization process is considered as a random
walk in the configuration space of all allowed light field
states. Here, a state K is given by the cavity mode occu-
pation numbers K ¼ ðnK0 ; nK1 ; nK2 ; . . .Þ. The mode occupa-

tion numbers are frequently altered by photon absorption
and emission processes. In first-order perturbation theory,
the rates (per volume) for absorption and emission of one

photon in mode i at cavity position r, denoted by RK;i
12 ðrÞ

and RK;i
21 ðrÞ, respectively, have the form

RK;i
12 ðrÞ ¼ B12ð!iÞuiðrÞ�#nKi ; (4)

RK;i
21 ðrÞ ¼ B21ð!iÞuiðrÞ�"ðnKi þ 1Þ; (5)

where uiðrÞ is the spectral energy density of one photon in
mode i. We first assume a grand-canonical ensemble limit;

i.e., we consider the number of dye molecules as suffi-
ciently large that the change of the excitation level �"=�#
from photon absorption and emission can be neglected.
Thus, the species densities �#;" are treated as fixed

parameters.
In the theory of random walks, a well-known detailed

balance criterion exists that determines if the rates given by
Eqs. (4) and (5) lead to equilibrium [17,18]. Suppose that a
stateK0 emerges from stateK by the absorption of a photon

in mode i, with nK
0

i ¼ nKi � 1, and accordingly that K
emerges from K0 by an emission process into this mode.

The corresponding (local) rates are RK;i
12 ðrÞ and RK0;i

21 ðrÞ;
and with Eqs. (4) and (5), their ratio is given by

RK;i
12 ðrÞ=RK0;i

21 ðrÞ ¼ B12ð!iÞ�#=B21ð!iÞ�". Thermal equilib-

rium will be reached, if this ratio is given by the Boltzmann
factor of the energy difference between K and K0 [18], i.e.,

B12ð!iÞ
B21ð!iÞ

�#
�"

¼ eð@!i���Þ=kBT: (6)

If one now applies the Kennard-Stepanov relation, Eq. (2),
and assumes chemical equilibrium, Eq. (3), the detailed
balance condition Eq. (6) is indeed verified. Thus, the state
of the photon gas will thermalize to the temperature of the
dye solution T at a chemical potential �� related to

the excitation level of the dye molecules. In particular, the
average occupation number ofmode i, denoted by �ni, can be
determined by balancing the average absorption and emis-
sion rates at a given cavity position. This gives the expe-
cted Bose-Einstein distribution �ni ¼ fexp½ð@!i ���Þ=
kBT� � 1g�1. For atomic Bose gases, one typically omits
the rest energy mc2 from the Hamiltonian. We will adopt
this convention for the photon gas by removing the ground-
state energy Eq00 from all energies including the chemical

potentials. With � ¼ �� � Eq00, the Bose-Einstein distri-

bution becomes

�nðuÞ ¼ gðuÞ
eðu��Þ=kBT � 1

; (7)

where u ¼ E� Eq00 ¼ 0; @�; 2@�; . . . is the reduced

photon energy, and we have used the degeneracy gðuÞ ¼
u=@�þ 1 to combine all modes of the same energy; see
Fig. 1(b). For the sake of simplicity, we neglect the polar-
ization degeneracy of each mode throughout this Letter,
which would give an additional degeneracy factor of 2. This
case is discussed in the SupplementalMaterial [15]. For this
system, a phase transition is expected at a critical tempera-
ture of [11,12]

Tc ¼
ffiffiffi
6

p
@�

�kB

ffiffiffiffi
�N

p
¼

ffiffiffiffiffiffi
12

p
@~c

�kB

ffiffiffiffiffiffiffiffiffiffiffiffi
1

D0

�N

R

s
; (8)

at which the ground-state occupation �n0 � �nð0Þ becomes a
macroscopic fraction of the total average photon number �N.
Condensate fluctuations.—For grand-canonical Bose-

Einstein condensation, i.e., in the presence of an infinitely
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large particle reservoir, condensate number fluctuations of
the order of the total particle number occur [3–6].
However, no excess fluctuations occur in the (micro)ca-
nonical ensemble, which is usually realized in atomic BEC
experiments [7]. For the photon Bose-Einstein condensate,
the ground-state mode is coupled to the electronic transi-
tions of a given number of dye molecules. In this way, the
condensate exchanges excitations with a reservoir of size
M, which is given by the product of dye concentration and
ground-state mode volume.

We start with the master equation for the probability
pn ¼ pnðtÞ to find n (� n0); photons in the ground state at
time t. The flow of probability between the ground mode
and its reservoir is governed by [19]

_p n ¼ R21
n�1pn�1 � ðR12

n þ R21
n Þpn þ R12

nþ1pnþ1; (9)

where R12
n ¼ B̂12ðM� Xþ nÞn is the rate of absorption

and R21
n ¼ B̂21ðX� nÞðnþ 1Þ the rate of stimulated and

spontaneous emission for a configuration with n photons,
X � n electronically excited molecules, and M� X þ n
ground-state molecules. The excitation number X is the
sum of the ground mode photon number and the number of
excited molecules in the reservoir. In this calculation, X is
treated as a constant [15]; i.e., it is not expected to perform
large fluctuations on its own. The rates R12

n and R21
n follow

from Eq. (4) and (5) by integrating over volume and setting

B̂12;21 :¼ B12;21ðEq00=@Þuq00ð0Þ, where uq00ð0Þ is the spec-
tral energy density of the ground mode on the optical axis.
For large times, pnðtÞ is expected to become stationary,
_pnð1Þ ¼ 0, and approach its equilibrium value P n :¼
pnð1Þ. In this asymptotic case, the solution of the master
equation (9) is found to be P n ¼ P 0

Q
n�1
k¼0 R

21
k =R12

kþ1,

which is

P n

P 0

¼ ðM� XÞ!X!
ðM� X þ nÞ!ðX � nÞ!

�
B̂21

B̂12

�
n
: (10)

This photon number distribution can be used to obtain both
the average ground-state occupation and its fluctuations.
We consider experimental conditions, where the tempera-
ture of the system is varied, with the total average photon

number �N (in all modes) being fixed. Correspondingly,
upon temperature variations the excitation level �"=�# of
the dye medium and the total ground mode excitation
parameter X have to be readjusted (see Supplemental
Material [15]).
Figure 2(a) shows the ground mode occupation �n0= �N

(solid lines) as a function of the reduced temperature T=Tc

for a constant average photon number of �N ¼ 104, six
reservoir sizes from M1 ¼ 108 over M2 ¼ 109 up to
M6 ¼ 1013, and a dye-cavity detuning of @�=kBTc :¼
ðEq00 � @!0Þ=kBTc ¼ �4:35, which adjusts B̂21=B̂12 via

Eq. (2) and is experimentally realizable [8,9]. Upon reach-
ing criticality, the ground mode occupation becomes a
macroscopic fraction of the total photon number. The
occupation level closely follows the analytic solution
�n0= �N ¼ 1� ðT=TcÞ2 [not shown in Fig. 2(a)], nearly
independent of the reservoir size M [the solid lines for
different M essentially overlay in Fig. 2(a)]. The dashed
lines shows the fraction �n0=X of ground mode occupation
and total excitation number versus temperature, which
reveals that the vast majority of excitations is stored as
electronic excitations in the medium down to relatively low
temperatures. Figure 2(b) gives the normalized ground
mode fluctuations in terms of the zero-delay autocorrela-

tion function gð2Þð0Þ ¼ hn0ðn0 � 1Þi= �n20 versus tempera-

ture. For T � Tc, one finds the usual case of strong

intensity fluctuations with gð2Þð0Þ ¼ 2, accompanied by a
Bose-Einstein-like photon number distribution. Interest-
ingly, for large reservoir sizes M, the intensity correlation
function remains at this value even at temperatures below
Tc, i.e., when condensation sets in. In this regime, large
condensate number fluctuations occur due to grand-
canonical particle exchange with the molecular reservoir.
At even lower temperatures, T � Tc, the fluctuations are

damped, and one finds gð2Þð0Þ ’ 1, accompanied by a
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FIG. 2. (a) Condensate fraction �n0= �N (solid lines) and fraction
�n0=X (dashed lines) as a function of the reduced temperature
T=Tc for a photon number of �N ¼ 104, six reservoir sizes from
M1 ¼ 108, M2 ¼ 109 up to M6 ¼ 1013, and a dye-cavity detun-
ing of @�=kBTc ¼ �4:35. (b) Normalized condensate fluct-
uations gð2Þð0Þ ¼ hn0ðn0 � 1Þi= �n20 as a function of T=Tc for

various M [as in (a)], revealing large number fluctuations even
far below Tc.
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FIG. 1 (color online). (a) Optical microresonator enclosing a
dye medium (left). For a fixed longitudinal mode number q, the
photon gas can be mapped onto a two-dimensional gas of
massive particles (effective mass m) confined in a harmonic
trap with trapping frequency� (right). (b) Scheme of the density
of states in the resonator.
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Poissonian photon statistics. We have no indication that the
crossover from Bose-Einstein to Poissonian statistics is
accompanied by an additional phase transition, i.e., a non-
analytic behavior of thermodynamic functions.

In general, the photon number distribution Eq. (10) can
be either Bose-Einstein-like, Poisson-like, or an intermedi-
ate case. It will be Bose-Einstein-like if the molecular

reservoir is so large that the ratio P nþ1=P n ¼ ðB̂21=B̂12Þ�
ðX � nÞ=ðM� Xþ nþ 1Þ is approximately constant for
all relevant photon numbers n. Then P n has its peak value
at n ¼ 0 and decays exponentially like a geometric series,

with P n=P 0 ’ ½ðB̂21=B̂12ÞX=ðM� XÞ�n. Thus, the most
probable event is to find no photons at all. Note that this
can be achieved by increasing M while keeping the exci-
tation level �"=�# ’ X=ðM� XÞ fixed (which maintains�,

�n0, and �N). For Poissonian statistics, P n has its maximum
at a nonzero n. Because of the smooth crossover, the
distinction between these two statistical regimes is not
unambiguous. However, a natural choice is to consider
the point at which ‘‘finding zero photons’’ ceases to be
the most probable event. This occurs atP 0 ¼ P 1 (compare
also to the laser threshold described in Ref. [20]) and with

Eq. (10) corresponds to ðMþ 1Þ=X ¼ 1þ B̂21=B̂12. The
temperature Tx at which this occurs, for fixed �N andM, can
be shown to fulfill the transcendental equation

�N � �

6

�
kBTx

@�

�
2 ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

ð1þ e@�=kBTxÞð1þ e�@�=kBTxÞ

s
: (11)

For zero dye-cavity detuning � ¼ 0, one finds the analy-

tic solution Tx;�¼0 ’ Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffi

M
p

=2 �N
q

, provided thatffiffiffiffiffi
M

p
=2 �N < 1, while for general detunings �, Eq. (11) has

to be solved numerically. Figure 3 gives a phase diagram,

where solutions for three different cases
ffiffiffiffiffi
M

p
=2 �N ¼ ffiffiffiffiffiffiffi

0:1
p

,

1, and
ffiffiffiffiffiffi
10

p
are marked as dashed lines, which separate two

regimes of the condensate, denoted by C(I) with Bose-
Einstein-like photon statistics and C(II) with Poisson
statistics, respectively. In terms of second-order correla-

tions, the dashed lines correspond to gð2Þð0Þ ’ 1:571. Note
that both Tc and Tx are conserved in a thermodynamic limit
�N;M;R ! 1 that includes �N=R ¼ const and

ffiffiffiffiffi
M

p
= �N ¼

const. For a fluctuating condensate in the C(I) regime,

the time-dependent intensity correlations gð2Þð�Þ ¼
hn0ðtÞ½n0ðtþ �Þ � 1�i= �n20 decay like gð2Þð�Þ ¼ 1þ
expð��=�ð2Þc Þ, with �ð2Þc ¼ �n0=B̂21X as the second-order
correlation time [15], similar to the photon bunching of
thermal emitters.

In conclusion, we have studied the thermalization and
condensation of photons in equilibrium with a dye micro-
cavity. Our analysis predicts a regime with unusually large
condensate fluctuations, not observed in present atomic
BEC experiments. Moreover, it adds to a classification of
photonic BEC in relation to other light sources. In general,
Bose-Einstein condensation applies to a system in thermo-

dynamic equilibrium, in contrast to lasing which normally
occurs under nonequilibrium conditions. The latter is
brought about by a violation of chemical equilibrium
which occurs if photons are lost (e.g., transmitted) instead
of being reabsorbed by the medium. Additionally, BEC
shows a pronounced dependence on the density of states of
a system intrinsically requiring a statistical multimode
treatment, whereas single-mode treatments are fully suffi-
cient to describe the (single-mode) behavior of a wide class
of lasers. If one considers a zero-delay autocorrelation

function of gð2Þð0Þ ¼ 1 to be an essential ingredient of
lasing, as is common in laser literature [21], the intensity
fluctuations (photon statistics) can give a further distin-
guishing feature between lasing and photonic BEC, as the
latter is not necessarily accompanied by a damping of
fluctuations. We note that, for other lasing threshold defi-
nitions based on the internal operation of the device, also
laser light with non-Poissonian photon statistics can occur
[22,23]. This ambiguity does not occur in the case of
photonic BEC, where the phase transition is uniquely
defined.
For the future, it will be important to study the statistics

of an interacting photon gas. In general, interactions can
suppress above-Poissonian intensity fluctuations [6]. One
here has to distinguish between thermo-optically induced
interactions [8], which are comparatively slow, and ultra-
fast Kerr lensing. Another line of research could also be
dedicated to the (interaction-induced) superfluidity of the
photon condensate.
We acknowledge financial support of the DFG under

Contract No. We1748/17.

FIG. 3 (color online). Phase diagram of the two-dimensional
photon gas for fixed average photon number �N, as a function of
the reduced temperature T=Tc and the dye-cavity detuning
@�=kBTc. The solid line marks the BEC phase transition. The
dashed lines (three cases are shown) separate two regimes: a
condensate with large number fluctuations and a BE-like photon
number distribution C(I), and a nonfluctuating condensate
obeying Poisson statistics C(II). The temperature of the cross-
over C(I)-C(II) depends on the ratio

ffiffiffiffiffi
M

p
= �N, with the reservoir

size M as the number of dye molecules in the mode volume
of the ground state. The insets give a sketch of the corres-
ponding temporal evolution of the condensate photon number
n0ðtÞ.
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