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Susana F. Huelga,1 Ángel Rivas,1,2 and Martin B. Plenio1

1Institut für Theoretische Physik, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
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We analyze the steady state entanglement generated in a coherently coupled dimer system subject to

dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the

effective noise strength while varying the memory time of the environment, we demonstrate that non-

Markovianity is an essential, quantifiable resource that may support the formation of steady state

entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to

separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement

in purely decohering, possibly local, environments. We present a feasible experimental demonstration of

this noise assisted phenomenon using a system of trapped ions.
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The generation and ultimate persistence of quantum
entanglement is normally thought to be correlated with a
high degree of system isolation, while the presence of a
surrounding environment tends to decohere the quantum
system thus driving it towards a classically correlated state.
However, driven systems, generally out of equilibrium,
have been shown to tend towards steady states where
quantum correlations are nonvanishing [1]. A variety of
entanglement preserving mechanisms have been put for-
ward, showing how the presence of environmental noise
can be instrumental in keeping the system entangled in the
steady state [1–7]. In the framework of a Markovian dy-
namics, the presence of local pure dephasing is normally
detrimental for entanglement preservation [8]. The situ-
ation though is very different when the dephasing noise is
non-Markovian. We show that the presence of steady state
entanglement can be linked unambiguously to an increas-
ing degree of non-Markovianity, even when the environ-
ments are acting locally. This result is of particular interest
in the light of identifying mechanisms that assist entangle-
ment preservation in condensed matter and biomolecular
systems, where non-Markovian dephasing is a dominant
noise source [9–13].

The system.—We consider a dimer system made up of
two qubits (pseudo-spin-1=2 particles) coherently coupled
via an exchange interaction of strength J, so that the
system Hamiltonian reads Hs ¼

P
2
j¼1 !j�

þ
j �

�
j þ

Jð��
1 �

þ
2 þ �þ

1 �
�
2 Þ (@ ¼ 1), where ��

j are the raising

(lowering) operators for site j, and subject to the action
of an environment that leaves the populations unaffected
but tends to randomize the phases of superposition states
(the so-called pure dephasing or transverse decoherence).
We will model this situation by subjecting each element
j ¼ 1, 2 of the dimer to the action of a localized harmonic
mode, being the system-mode interaction governed by a

Hamiltonian of the form Hs-m ¼ gj�
j
zðaj þ ayj Þ, where aj

(ayj ) denote the the operators of annhilitation (creation) of

mode excitations. We will assume that the local modes are
damped by a conventional Markovian bath so that the
global time evolution of the dimer and the vibrational
modes is described by a Markovian master equation with
a Liouvillian part accounting for the damping of the local-
ized modes at a certain rate �. Note, however, that tracing
out the local mode leads to a density matrix for the dimer
system that is in general no reproducible from a purely
Markovian evolution for the dimer alone. We will show
that the interplay between the entangling exchange inter-
action and the local dephasing will result in an entangle-
ment dynamics that depends crucially on whether or not
the action of the environment can indeed be described by
merely subjecting the dimer to Markovian dephasing. In
the limit where the coherent coupling g is smaller than the
decay � we find that the effective dephasing rate �eff ,
which quantifies the strength of the system-environment
coupling, is proportional to the ratio g2=� (see [14] for the
case of cavity QED). When 2g � � the dephasing is
exponential and the decohering dynamics of the system
can be reproduced by a Lindblad master equation with an
effective decay rate �eff . For 2g < �, a regime which we
denote as weakly non-Markovian, the definition of an
effective dephasing rate �eff is still reasonable for times
exceeding ��1 when the decay is well approximated by an
exponential. In the limit where g > � significant coherent
oscillations can occur and the definition of an effective
dephasing rate becomes meaningless. In this work we
operate in the regime where 2g < � and analyze the differ-
ent dynamics that the dimer system undergoes when sub-
ject to the same effective noise strength but varying
memory time of the environment. This will allow us to
single out the precise influence of environmental time-
correlations on the persistence/absence of stationary en-
tanglement in the dimer system.
A convenient parametrization.—In order to link the ob-

served dynamics to a parameter that quantifies how much
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the environmental action departs from strict Markovianity,
we will introduce an index f such that the coherent spin-
mode coupling g and the mode damping rate � are given
by, respectively: g ¼ ffiffiffi

f
p

g0 and � ¼ f�0. In this way, the
noise strength g2=� ¼ g20=�0 is kept fixed while varying f
from values much larger than 1 to much smaller than 1
leads to, respectively, Markovian and non-Markovian dy-
namics with, crucially, the same effective local dephasing
rate �eff . In other words, the strength of the dephasing
noise is kept fixed, but the underlying noisy dynamics is
modified, making the coherent system-oscillator coupling
to dominate over losses (small f domain) or vice versa
(limit of large f). Note, however, that while the decoher-
ence rate is kept constant as the parameter f is varied, the
population decay (which depends on g and �) does change,
as shown in Fig. 1. The monotonic change in Markovianity
of the noise with the parameter f is shown in Fig. 2, where
an explicit measure of non-Markovianity is considered.

Analytical results.—The effective Hamiltonian for the
dimer-local damped modes system takes the form

Heff ¼ !1�
þ
1 �

�
1 þ!2�

þ
2 �

�
2 þ Jð�þ

1 �
�
2 þ ��

1 �
þ
2 Þ

þ ð�1 � i�1Þay1a1 þ ð�2 � i�2Þay2a2
þ g1�

ðzÞ
1 ða1 þ ay1 Þ þ g2�

ðzÞ
2 ða2 þ ay2 Þ; (1)

where !i and �i (i ¼ 1, 2) denote the site and the mode
frequencies, respectively, and

_� ¼ �iHeff�þ i�Hy
eff þ 2�1a1�a

y
1 þ 2�2a2�a

y
2 : (2)

Motivated by the situations frequently encountered in
biomolecular complexes where external illumination is

either weak and/or doubly excited states are strongly sup-
pressed [15], we will focus here on situations for which the
dimer dynamics is confined to the single excitation sector
so that the entire dynamics for the two sites takes place in
the subspace spanned by the states j01i, j10i. By introduc-
ing the convenient delocalized states jui ¼ 1ffiffi

2
p ðj01i þ j10iÞ

and jdi ¼ 1ffiffi
2

p ðj01i � j10iÞ and the operators

�p=m ¼ 1ffiffiffi
2

p ð�ðzÞ
1 � �ðzÞ

2 Þ; (3)

ap=m ¼ 1ffiffiffi
2

p ða1 � a2Þ; (4)

noting that �pjui ¼ �pjdi ¼ 0 while �mjui ¼
ffiffiffi
2

p jdi and
�mjdi ¼

ffiffiffi
2

p jui, in the subspace spanned by jui and jdi, the
Hamiltonian part accounting for the system-mode interac-
tion is given by

Hs-m ¼ g�
2

�mðap þ aypÞ þ gþ
2

�mðam þ aymÞ; (5)

where g� ¼ g1 � g2. Note that the restriction to the one
excitation sectors removes the contribution from terms
involving �p, as this operator does not couple to the states

jui and jdi. In the special case where !1 ¼ !2 ¼ !,
�1 ¼ �2 ¼ �, �1 ¼ �2 ¼ � and g1 ¼ g2 ¼ g, the total
Hamiltonian takes the form

FIG. 1 (color online). Beating pattern in the dimer population
inversion for different values of f (See main text for details). A
Markovian environment (f � 1) will simply wash out the dis-
creteness of the vibrational modes while the presence of beating
in the dimer signal is a signature of the persistence of a coherent
interaction with a localized vibrational (damped) mode.

FIG. 2 (color online). Using the non-Markovianity measure
introduced in [16] we can rigorously quantify the deviation
from strict Markovianity of the dynamical map describing the
time evolution of the dimer system. A finite value of the measure
DNM indicates that the dynamics cannot be accounted for in
terms of a master equation of the Lindblad form. Here the values
of f range from fmin ¼ 0:0035 to fmax ¼ 3:6554 when the
coordinate x varies between 0 and 140. The value of DNM

decreases monotonically with f for the selected parameter
regime. For f sufficiently large, the dynamical map is divisible,
DNM is zero and the dimer’s evolution is fully Markovian.
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Heff ¼ ð!þ JÞjuihuj þ ð!� JÞjdihdj þ ð�� i�Þaymam
þ ffiffiffi

2
p

gðjuihdj þ jdihujÞðam þ aymÞ; (6)

and the time evolution reads,

_� ¼ �iHeff�þ i�Hy
eff þ 2�am�a

y
m: (7)

An analogous derivation could be done for the case where
both subsystems in the dimer couple to a global mode. In
this case, Hs-m ¼ �mgðaþ ayÞ, and therefore the dimer
would remain decoupled if g1 ¼ g2, while different cou-
plings would yield to a system’s dynamics analogous to
that of the effective qubit (jdi, jui) discussed above with
g ¼ g1 � g2. Figure 1 depicts the time evolution of the
dimer’s population inversion �dimer

z ¼ j10ih10j � j01ih01j
for different values of f. For this example the following
parameters were considered: ! ¼ 0, J ¼ 1 (interdimer
coupling), � ¼ 2J, g0 ¼ J and �0 ¼ 20J. With this,
�eff ¼ J=10. We truncated each oscillator after Fock layer
2 as the probability to have a single excitation in either
mode never exceeds 10% in the parameter regime that we
consider here. Varying f in the range from 10�3 to 100
allows us to move from a situation where g � � to the
domain where g� �, so that the damped mode ranges
from being Markovian to imprinting an element of non-
Markovianity to the dynamics, as quantitatively exempli-
fied when evaluating the degree of non-MarkovianityDNM

introduced in [16]. This measure provides a necessary and
sufficient condition for a given evolution to depart from
strict Markovianity by means of evaluating whether or not
the associated dynamical map Eðtþ�;tÞ is completely posi-

tive (CP) for any �. For that, it has to be ðEðtþ�;tÞ � 1Þj�i�
h�j � 0, where j�i is maximally entangled of our open
system and some ancillary system [17]. Using this condi-
tion, one can define a quantitative measure to quantify how
much does the evolution departs from strict Markovianity
by evaluating I ¼ R1

0 gðtÞdt, where the function g quan-

tifies how much does the norm of state ðEðtþ�;tÞ � 1Þj�ih�j
differ from 1 in the limit of � ! 0 [16]. In Fig. 2, we have

plotted the normalized measureDNM ¼ I
Iþ1 for a range of

values of f, showing that the domain of large f leads to the
dimer’s dynamics to be fully Markovian. Limiting the
harmonic oscillator to just 2 levels, we find for the steady
state population of the state jdi the result

�ss
dd �

4g2 þ �2 þ ð2J þ�Þ2
2ð4g2 þ �2 þ 4J2 þ�2Þ : (8)

In the limit of sufficiently small f, and in the regime where
the local mode is quasiresonant with the dimer eigenstates,
so that �� J, one finds that the above expression tends to
unity. Hence, in this picture, the system is in weak inter-
action with a composite environment (local modeþ
Markovian reservoir) and relaxes towards its ground state,
which in this case is the singlet state. When weakly
coupled to a purely Markovian environment and

experiencing dephasing at the same rate as before, the
steady state of the dimer system tends towards the maxi-
mally mixed state and no entanglement survives in the long
term. The time evolution of the entanglement in the dimer
system, as quantified by the logarithmic negativity [18] of
the state, is summarized in Fig. 3, for an initial factorized
condition where there is an excitation in one site only.
Indeed, when f is large, the dynamics of the dimer can
be reproduced by simulating a Markovian master equation
with local dephasing rates �eff . In this case, the steady state
of the dimer is maximally mixed, a result that can be
proven using the results presented in section 4 of [8],
following theorem 5.2 of [19]. When f decreases but
remaining in the weakly non-Markovian regime, the steady
state approaches the singlet state, which in this case is the
lowest energy eigenstate of the coherent evolution.
Provided that we keep on the weak non-Markovian regime
(so that the condition �i > gi is satisfied), altering the
symmetry of the problem and considering g1 � g2 does
not reduce the overlap with the singlet below 90% up to
ratios g2=g1 ¼ 2. At a finite temperature, the steady state
entanglement is decreased but remains finite. For an aver-
age photon number of nth ¼ 0:3 we find that the steady
state entanglement reaches the value of 0.67 for f ¼ 0:01
(Finite T results are not shown in the figures). For GHz
frequencies as they are typical for quantum optical imple-
mentations this corresponds to around 300 mK. For typical
biological systems however, the bath spectral density peaks
around 200 cm�1 (corresponding to ! ¼ 4� 1013 Hz) so
that nth ¼ 0:3 corresponds to a temperature T ffi 77 K. At
these temperatures typical biomolecular systems such as

FIG. 3 (color online). Time evolution of the entanglement
content of the dimer system when the index f varies from the
range f � 1 (Markovian evolution) to f � 1 (non-Markovian
effects). When the evolution is strictly Markovian, the steady
state is separable while in the presence of non-Markovianity, the
dimer system contains quantum correlations that steadily be-
come close to 1 e bit for f sufficiently small.
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the Fenna-Matthew-Olson complex will suffer non-
Markovian system-environment dynamics and exhibits
long-lived coherences in the dynamics as demonstrated
in recent experiments [20].

Possible experimental realization.—In this section we
outline a possible implementation of the model dynamics
discussed in the previous section. This realization employs
proven elements of ion trap technology and offers, in
principle, the possibility for control of all the relevant
parameters in the Hamiltonian Eq. (2). Three basic dy-
namical elements have to be generated. The electronic
degrees of freedom of trapped ions constitute the dimer
and need to be coupled to each other, the motional degrees
of freedom play the role of the environment and need to be
coupled to the electronic degrees of freedom via a disper-
sive interaction and laser cooling needs to be employed to
induce damping of the motional degrees of freedom which
generates a Lorentzian spectral density.

For the implementation of the direct coupling between
the two qubits we make use of a Sørensen-Mølmer gate
[21,22]. To this end one applies laser fields with two differ-
ent frequencies so that the two-photon process coupling
jggi $ jeei and jegi $ jgei is resonant, i.e., !L

1 þ!L
2 ¼

2!eg, while neither of the frequencies are resonant with

single excitations of the ions. This can be achieved by
choosing !L

1 ¼ !eg � � and !L
2 ¼ !eg þ �, where � �

��R, �. Here � denotes the Lamb-Dicke parameter, �R

the laser Rabi frequency and � is the frequency of the
center-of-mass mode. If we prepare the two ions represent-
ing the dimer initially in a single excitation subspace we
realize in this fashion the Hamiltonian Hdimer ¼
Jeffð�þ

1 �
�
2 þ �þ

2 �
�
1 Þ with an effective exchange coupling

Jeff � ð�R�Þ2=ð�� �Þ [21]. The added advantage of this
scheme is the fact that it does not require the center-of-
mass mode to be in its ground state thus increasing the
robustness of the scheme. The excitation preserving cou-
pling Hamiltonian �zðaþ ayÞ between an ion and the
motional degrees of freedom can be achieved in several
ways. One approach [23] subjects the ion to a far off-
resonant standing wave, which creates the state dependent
potential VðzÞ ¼ V0cos

2ðkẑþ 	
4Þ�z. Here k is the wave-

vector of the standing wave lasers. The operator ẑ is readily

expressed in terms of phonon operators, z ¼
P

nMn

ffiffiffiffiffiffiffiffiffi
1

2m!n

q
ðan þ ayn Þ, where m is the ion mass, and

Mn is the amplitude of each vibrational mode n at the
ion. Expanding this potential in the small parameter kz �
1 we find that the leading order contribution is linear in z
with the second order contribution canceling. Hence we

obtain a Hamiltonian Hsb ¼ �z

P
nMn

ffiffiffiffiffiffiffiffiffi
1

2m!n

q
ðan þ ayn Þ.

Traveling wave fields can also be used to generate this
type of interaction in a suitably transformed basis [23].
This scheme couples to all the modes of the ion crystal
which may lead to correlations between the environments

acting on separate parts of the dimer. We may select
specific environment modes by choosing light fields that
are slightly off-resonant to specific modes while being
more strongly detuned from the remaining modes.
Finally our dimer model assumes that the modes coupling
to the constituents of the dimer are damped. Damping of
motional degrees of freedom can be achieved, of course, by
applying laser cooling to an auxiliary third ion that couples
to all the motional modes of the system. To be effective,
this auxiliary ion should be placed at the end of the ion
chain to ensure coupling to all modes in the ion string.
Combining these three elements yields the dynamical
Hamiltonian discussed in Eq. (2) which underlies the
non-Markovianity driven steady state entanglement in a
dimer system.
Conclusions.—We have demonstrated that, when subject

to system-environment interactions of the same effective
strength, the non-Markovian character of the noise can be
the crucial property that leads to steady state entanglement
where purely Markovian noise would result in the com-
plete destruction of entanglement. A possible experimental
verification of this dephasing-assisted phenomenon in ion
trap physics which employs only experimentally demon-
strated building blocks has been discussed. We expect
these studies to contribute towards the identification of
the physical mechanisms that could underpin the persis-
tence of stationary quantum correlations in very noisy
environments occurring in natural conditions [9–13]. A
key issue in this context would be the evaluation of this
effect for realistic (possibly strongly non-Markovian), mul-
ticomponent, biological systems operating at physiological
temperatures. Numerical methods with the ability to simu-
late exactly structured spectral densities at finite tempera-
tures would be required to fully address this issue and
initial steps towards this development have already been
presented [24].
We are grateful to Felipe Caycedo-Soler for carefully

reading the manuscript. This work was supported by the
EU STREP projects CORNER and PICC, the EU
Integrated Project Q-Essence, the project QUITEMAD
S2009-ESP-1594 of the Consejerı́a de Educación de la
Comunidad de Madrid, MICINN FIS2009-10061 and by
the Alexander von Humboldt Foundation.

[1] M. B. Plenio and S. F. Huelga, Phys. Rev. Lett. 88, 197901
(2002).

[2] S. F. Huelga and M.B. Plenio, Phys. Rev. Lett. 98, 170601
(2007).

[3] N. Lambert, R. Aguado, and T. Brandes, Phys. Rev. B 75,
045340 (2007).

[4] J. Li and G. S. Paraoanu, New J. Phys. 11, 113020 (2009);
E. del Valle, JOSA B 28, 228 (2011).

[5] F. Galve, L. A. Pachón, and D. Zueco, Phys. Rev. Lett.
105, 180501 (2010).

PRL 108, 160402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 APRIL 2012

160402-4

http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.98.170601
http://dx.doi.org/10.1103/PhysRevLett.98.170601
http://dx.doi.org/10.1103/PhysRevB.75.045340
http://dx.doi.org/10.1103/PhysRevB.75.045340
http://dx.doi.org/10.1088/1367-2630/11/11/113020
http://dx.doi.org/10.1364/JOSAB.28.000228
http://dx.doi.org/10.1103/PhysRevLett.105.180501
http://dx.doi.org/10.1103/PhysRevLett.105.180501


[6] J. Cai, S. Popescu and H.-J. Briegel, Phys. Rev. E 82,
021921 (2010).

[7] A. Wolf, G. De Chiara, E. Kajari, E. Lutz, and G. Morigi,
Europhys. Lett. 95, 60008 (2011).

[8] A. Rivas, N. P. Oxtoby, and S. F. Huelga, Eur. Phys. J. B
69, 51 (2009).

[9] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev.
Lett. 99, 160502 (2007).

[10] F. Caruso, A.W. Chin, A. Datta, S. F. Huelga, and M.B.
Plenio, J. Chem. Phys. 131, 105106 (2009); F. Caruso,
A.W. Chin, A. Datta, S. F. Huelga, and M.B. Plenio, Phys.
Rev. A 81, 062346 (2010); M. Sarovar, A. Ishizaki, G. R.
Fleming, and K. B. Whaley, Nature Phys. 6, 462 (2010).

[11] A. G. Dijkstra and Y. Tanimura, Phys. Rev. Lett. 104,
250401 (2010).

[12] J.-Q. Liao, J.-F. Huang, L.-M. Kuang, and C. P. Sun, Phys.
Rev. A 82, 052109 (2010).

[13] P. Rebentrost and A. Aspuru-Guzik, J. Chem. Phys. 134,
101103 (2011).

[14] A. Imamoglu, Phys. Rev. A 50, 3650 (1994), and refer-
ences therein.

[15] T. Renger, V. May, and O. Kühn, Phys. Rep. 343, 137
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