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Often groups need to meet repeatedly before a decision is reached. Hence, most individual decisions

will be contingent on decisions taken previously by others. In particular, the decision to cooperate or not

will depend on one’s own assessment of what constitutes a fair group outcome. Making use of a repeated

N-person prisoner’s dilemma, we show that reciprocation towards groups opens a window of opportunity

for cooperation to thrive, leading populations to engage in dynamics involving both coordination and

coexistence, and characterized by cycles of cooperation and defection. Furthermore, we show that this

process leads to the emergence of fairness, whose level will depend on the dilemma at stake.
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Many problems of cooperation among humans boil down
to the dilemma of helping others at a cost to ourselves or
refraining from doing so while still profiting from the help
provided by others [1–3]. Surprisingly often we take the
first option, even though rational considerations encourage
us not to [1,2]. This talent for cooperation forms one of the
cornerstones of human society and is, as such, also largely
responsible for the unprecedented success of our species
[4]. But how did evolution succeed in shaping such coop-
erative beings, if the temptation to free ride on the benefits
produced by others is always lurking? This paradox of
cooperation [5] has been under intense scrutiny for decades
and, fortunately, several mechanisms discourage us from
actually giving in to this temptation [5–15]. Physicists have
investigated some of these mechanisms (for an excellent
review, see [8]), as human cooperation constitutes an ex-
cellent example of a complex system. Cooperation may, for
instance, be worthwhile if your opponent has the chance to
return you the favor later on. If he or she is not willing to do
so, his or her cheating behavior can still be retaliated. This is
Robert Trivers’ direct reciprocity at work [16]. Theoretical
and empirical studies show that individuals who pursue
long-term relationships built on mutual cooperation are
expected to prevail [17–21]. In this context, tit-for-tat play-
ers constitute the most famous example [17]: They always
start by cooperating, subsequently repeating their oppo-
nent’s last move.

Direct reciprocation may enhance cooperation for pair-
wise interactions, but when larger groups of actors are
involved, decision-making becomes much more complex.
Similar to the relation between 2-body and many-body
interactions in Physics, also in human decisions there is a
significant increase in complexity when going from pair-
wise cooperative game interactions to collective efforts in
sizable groups. Technically, such an increase in complexity

is reflected in the number of possible behavioral equilibria,
which scales linearly with the group size [22], even in the
absence of reactive players. Moreover, it is far from clear
under which conditions a cooperator (defector) should
switch to defection (cooperation) when engaged in a re-
peated collective endeavor, wherein some may cooperate
while others defect. To whom should one reciprocate [23]?
One possibility is to reciprocate towards the entire group.
As in previous studies of evolution and assessment of fair
offers [24–27], reciprocating towards groups will depend
on what is reckoned as a fair collective effort, as individu-
als may develop an aspiration level above which they
cooperate, defecting otherwise. Such individuals constitute
a N-person generalization of the 2-person reciprocators.
Unsurprisingly, the spectrum of possible reciprocator strat-
egies for group, N-person game interactions, is much
larger than in the 2-person case. Some reciprocators may,
for instance, be willing to cooperate only if the entire group
did so in a previous encounter, whereas others may coop-
erate also in the presence of group members who defected.
Let us consider group decisions involving N individuals

described in terms of the repeated N-person prisoner’s
dilemma (NPD) [28,29], in which all players have the
opportunity to contribute a certain amount c (’’cost’’) to
the public good. The accumulated amount is multiplied by
an investment factor F and subsequently shared equally
among all group members, irrespective of their contribu-
tion. This entire process repeats itself with a probability w,
resulting in an average number of hri ¼ ð1� wÞ�1 rounds
per group [5,30]. The outcome of the game may differ from
round to round, as individuals can base their decision to
contribute on the result of the previous round. We distin-
guish N different aspiration levels, encoded in terms of the
strategies RM (M 2 f1; . . . ; Ng). RM players always con-
tribute in the first round. Subsequently, they contribute
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only if at least M players did contribute in the previous
round. The threshold M can be regarded as their own
perception of a fair number of contributions to the public
good. In addition to these N different types of reciproca-
tors, we include the strategy AD (always defect) to account
for unconditional defectors.

Let us start by assuming an infinitely large population of
individuals, where a fraction x of the population plays
RM—allowing one single value of M in the set of all
reciprocators—while the remaining fraction plays AD.
This will allow us to define the notation before addressing
finite populations and an evolving M, while unveiling a
dynamical scenario which differs strongly from the one
obtained from (repeated) 2-person games. Behavioral dy-
namics often relies on individuals’ propensity to be influ-
enced by the actions and achievements of others. Such
social learning or evolutionary dynamics can be described
by the replicator equation [31] _x ¼ xð1� xÞðfRM

� fADÞ,
where fRM

(fAD) stand for the fitness—or success—of RM

(AD) players, given by their payoff derived from the game
group interactions (see Eq. 1 in [32]).

A little algebra allows us to show that the (deterministic)
replicator dynamics leads to scenarios in which coopera-
tion may prevail, in connection with at most two internal
fixed points, associated with unstable (coordination, x�L)
and stable (coexistence, x�R) equilibria, which depend on
the values of w, M, N, and F (for detailed derivations, see
Section 1 in [32]). Intuitively, the simultaneous occurrence
of these two equilibria, which happens when we face a
repeated NPD (F < N), can be explained as follows. If the
RM frequency is smaller than x�L, there are only a few
groups in which RM players remain cooperative for the
entire duration of the game. The benefits they receive from
such interactions are insufficient to cover the cost for
always being prepared to cooperate in the first round,
making them disadvantageous with respect to ADs.
Hence, RM players will only endure as long as their prev-
alence remains above a minimum fraction x�L, representing
an unstable fixed point (coordination). But even if they
succeed, they will never take over the entire population,
unless M ¼ N. As long as M<N, RM players will coop-
erate in partially cooperative groups, opening an escape
hatch to the survival of a small fraction of ADs (a fraction
1� x�R), reflecting the stable coexistence between the two
strategies.

Additional insight in the characterization of x�L and x�R is
provided in Fig. 1 which shows that, for givenM=N, there
is a critical probability �w above which the two equilibria
emerge. �w increases as we reduce M=N, meaning that
more rounds are required to prevent AD from dominating
the population. Naturally, the location of x�L and x�R follows
the same trend, creating an interesting, but delicate, bal-
ance between the size of the basin of attraction of the
coexistence state x�R and its actual value. Relaxing the
criterium of fairness for reciprocators (lowering M) makes

the cooperative basin of attraction easier to reach (by
reducing x�L), but less cooperative overall (reduction of x�R).
So far, we have investigated the competition between a

single type of reciprocators and unconditional defectors.
However, the assessment of what constitutes a fair level of
cooperation in a group does not need to be unanimous in
the population: The value of M itself may be under selec-
tive pressure, and in this case, the delicate competition just
described becomes particularly important, mostly if we
take into account that populations are finite [11] and
selection is not free from errors of imitation [12,13,33]
and behavioral mutations [14].
Let us then consider a population of finite size Z, and

compute the average prevalence of each of the N þ 1
available strategies—AD plus the N different RM strat-
egies—over time. We implement a stochastic, finite popu-
lation analogue of the deterministic evolutionary dynamics
defined before, in which strategies evolve according to a
mutation-selection process defined in discrete time. At
each time step, the strategy of one randomly selected
individual A is updated. With probability �, A suffers a
mutation, adopting a strategy drawn randomly from
the space of N þ 1 available strategies; with probability
1��, another randomly selected individual B acts as a
role model for A: The probability that A adopts the strategy

of B is given by the Fermi distribution p ¼ ½1þ
e�ðfA�fBÞ��1 [8,12,33,34], where fA (fB) denotes the fitness
of individual A (B) and � � 0measures the strength of the
fitness contribution to the update process, i.e., the so-called
intensity of selection [12].
In the limit in which mutations are rare, we are able to

compute analytically the relative prevalence of each of the
different strategies [15,21,35] (for details, see Section 2 of
[32]). This simplified limit turns out to be valid over a
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FIG. 1 (color online). Interior fixed points of the replicator
equation as a function of w and F. (a) Each curve shows the
position of the internal roots of the replicator equation as a
function of w for a particular value ofM. There are no roots if w
is smaller than the critical value �w. A further increase in w leads
either to two fixed points (if M<N), the left one being unstable
and the other one stable, or to just one unstable fixed point
(if M ¼ N). The arrows indicate the direction of selection
(F ¼ 3:5, N ¼ 5). Results for finite populations with evolving
M are shown in Figs. 2 and 3.
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much wider interval of mutation regimes, as we show
below via numerical simulations. In this limit, the popula-
tion will either end up wiping out the mutant or witness the
fixation of the intruder long before the occurrence of a
new mutation. Hence, there will be a maximum of two
strategies present simultaneously in the population. The
fixation probabilities of all possible mutants in all (other-
wise) monomorphic populations can be readily computed
analytically [12,15,32], defining a reduced (embedded)
Markov chain, with which we compute the stationary
distribution of the population, i.e., the average fraction of
time the population spends in each of the N þ 1 mono-
morphic configurations of the population [32,35].

The results are shown in Fig. 2(a), where we plot the
stationary distribution for different values of the parameter
F. The distribution of RM players reveals some remarkable
features: On one hand, there is a specific concept of fair-
ness, associated with an aspiration level M� whose corre-
sponding strategy RM� is most favored by evolution, being
the most prevalent among all RM strategies. On the other
hand, unanimity in the assessment of fairness does not
occur, given that several values of M may coexist in the
population. Finally, as the dilemma becomes harsher

(lower values of F), the higher the fraction of the popula-
tion that adopts the most prevalent assessment of fair-
ness—M�—which is always much smaller than the group
size N [see also Fig. 3(a)]. Naturally, the success of AD
players increases with decreasing F [36].
The intuition behind the emergence of an optimal level

of fairnessM can be understood with the help of Fig. 2(b),
where we analyze the typical flow of probability between
the different monomorphic states. Arrows represent tran-
sitions favored by natural selection, i.e., those whose
fixation probability exceeds 1=Z (associated with the fixa-
tion probability of a mutant under neutral evolution).
Suppose we start from a homogeneous population of
ADs. Figure 2(b) shows that there are several RM types
with intermediate M who can invade AD (solid blue
arrows). Clearly, such a modest assessment of what con-
stitutes a fair group (intermediate M) combines the best of
two worlds: avoiding continuous exploitation, but being
sufficiently generous to maintain the level of cooperation
in groups that are only partially cooperative. Once a given
RM takes over, neutral drift (grey dashed lines) can drive
the population to any of the N � 1 other RM states, which
provides a foundation for the coexistence of different con-
cepts of fairness in the population. Whenever the demands
for fairness are too modest (M<M� ¼ 3), AD can take
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FIG. 2 (color online). Evolution of the threshold M in a finite
population. (a) Stationary distribution for different values of F.
Irrespective of the success of AD players, which decreases with
increasing F, there is always an optimal threshold M�, whose
corresponding strategy RM� is the most prevalent (w ¼ 0:9,
N ¼ 5, Z ¼ 100, � ¼ 1:0). (b) The percentages indicate the
fraction of time the population spends in each composition of
the population (F ¼ 4:25). Arrows indicate transitions whose
fixation probability is greater than �N ¼ 1=Z. One observes
oscillations between cooperation and defection. The population
moves from RM with small M, over AD, back to RM with
moderate threshold. Neutral drift may bring us back to RM

with small M, as emphasized using gray dotted lines.
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FIG. 3 (color online). Evolutionary dynamics for a) arbitrary
number of rounds and b) mutation probabilities. (a) The optimal
threshold M� as a function of F and hri in the limit of rare
mutations (w ¼ 0:9, N ¼ 5, Z ¼ 100, � ¼ 1:0). (b) Dashed
lines indicate the stationary distribution in the small-mutation
limit. Each symbol indicates, for a given mutation probability,
the fraction of the population that adopts the corresponding
strategy, averaged over the simulation time (30 simulations,
each lasting for 109 iterations; w ¼ 0:9, N ¼ 5, Z ¼ 100,
� ¼ 0:05; our results are robust to changes in � [32]).
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over the population again (open red arrows). Hence, the
population oscillates continuously between cooperation
and defection, resembling the cycles of war and peace
similar in spirit to those identified in the context of
repeated 2-person games of cooperation [21].

This scenario constitutes a general feature of the present
model, and is not the result of a particular choice of the
average number of rounds hri (or w) or mutation probabil-
ity �, as demonstrated in Fig. 3. Figure 3(a) shows that,
irrespective of the number of rounds hri, AD abounds when
F is small, RM with M ¼ 2 when F is large (but still
smaller than the group size N), and RM with M ¼ 3 for
intermediate values of F, which corresponds exactly to the
findings reported in Fig. 2(a). In other words, evolution
shapes the population assessment of fairness, depending on
the constraints imposed by the collective dilemma. In
Fig. 3(b) we investigate the robustness of our results with
respect to changes in �. We abandon the limit of rare
mutations, and determine the stationary distributions
for arbitrary mutation rates via computer simulations. For
�< Z�2, the results match the limit of rare mutations.
More importantly, the plot shows that our general conclu-
sion remains valid for a wide range of mutation probabil-
ities: RM players with a moderately large aspiration are
expected to prevail throughout a wide range of mutation
values. For large mutation rates (�> Z�1), all types of
reciprocators become equally probable and dominant with
respect to ADs. As a result, the overall outcome of coop-
eration is enhanced for high mutation rates. This is an
important point, as one expects that, e.g, in human inter-
actions, errors of decision making, well captured by the
behavioral mutations introduced here, may be sizable [14],
although at present a quantitative estimate is lacking.
Needless to say, the results shown in Figs. 2 and 3 for
N ¼ 5, remain valid for other values of N, in the sense that
the physical order parameter of the model remains the ratio
M=N (see �x in Section 1 of [32]).

In summary, we have studied the evolutionary dynamics
of repeated group interactions, in which individuals engage
in an iterated NPD. Reciprocators are defined as individu-
als who may cooperate, contingent on their own individual
assessment of what constitutes a fair group contribution.
We found that evolution selects for a moderate, yet prev-
alent, concept of fairness in the population. This choice
results from a detailed competition between the capacity to
avoid continuous exploitation and the generosity of con-
tributing in groups which are only partially cooperative.
The prevalent concept of fairness that emerges in the
population constitutes a compromise between too low
aspiration levels, which lead reciprocators to extinction,
and too high aspiration levels, associated with harsh
coordination thresholds. Combined with the neutrality be-
tween different concepts of fairness, the emergent dynam-
ics leads to cyclic behavior which, being ubiquitous in
evolutionary games [8,33], also resembles the alternation

between cooperation and defection which seems to
pervade throughout human history [37].
Financial support from FNRS Belgium (S. V. S., T. L.)

and FCT-Portugal (F. C. S., J.M. P.) is gratefully
acknowledged.

[1] G. Hardin, Science 162, 1243 (1968).
[2] P. Kollock, Annu. Rev. Sociol. 24, 183 (1998).
[3] M. Olson, The Logic Of Collective Action: Public Goods

and the Theory Of Groups (Harvard University Press,
Cambridge, MA, 1971).

[4] J. Maynard Smith and E. Szathmáry, The Major
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