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We analyze the nonlinear transport properties of a bilayer exciton condensate that is contacted by four

metallic leads by calculating the full counting statistics of electron transport for arbitrary system

parameters. Despite its formal similarity to a superconductor the transport properties of the exciton

condensate turn out to be completely different. We recover the generic features of exciton condensates

such as counterpropagating currents driven by excitonic Andreev reflections and make predictions for

nonlinear transconductance between the layers as well as for the current (cross)correlations and

generalized Johnson-Nyquist relationships. Finally, we explore the possibility of connecting another

mesoscopic system (in our case a quantum point contact) to the bottom layer of the exciton condensate

and show how the excitonic Andreev reflections can be used for transforming voltage at the nanoscale.
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Transport in electronic bilayer systems has recently
received increasing attention due to the possibility of
observing the formation of quantum macroscopic order
in these systems. Indeed, when an electron layer and a
hole layer are separated by an insulating barrier that is
sufficiently thick to prevent interlayer tunneling but suffi-
ciently thin to induce interlayer Coulomb interaction, an
excitonic condensate (EC) is predicted to form [1,2]. Such
a condensate is a macroscopic quantum coherent state, in
which electrons in one layer are bound to move coherently
with holes in the other layer. These predictions have been
confirmed in several experiments performed on GaAs
quantum wells separated by an AlGaAs barrier, both in
the quantum Hall regime at total filling factor � ¼ 1, see
[3] and, more recently, also at zero magnetic field [4]. So
far, most theoretical studies on transport properties in EC
were concentrated on the linear response regime [2,5], with
a special focus on Coulomb drag configurations [6]. Other
recent works have considered the case of EC contacted to
superconducting electrodes [7,8], whereas current fluctua-
tion properties have only been addressed for systems where
interlayer Coulomb interaction is present but is not strong
enough to lead to condensation [9].

A remarkable advance in the field of EC is expected to
arise from graphene bilayers. Such ECs are predicted
to exhibit substantially higher critical temperature than
ordinary semiconductor realizations [5,10,11], due to the
weaker screening and the higher electron and hole den-
sities that can be achieved in graphene. Quite recently,
systems of two graphene layers separated by a thin insu-
lating boron nitride film have been realized [12], and
transport experiments in these systems may become a
reality in the near future.

In this Letter we derive the full counting statistics (FCS)
of an EC bilayer, providing its complete low-frequency
transport characteristics [13]. This enables us to investigate

not only the nonlinear conductance, but also the current
noise and the higher current cumulants. To this purpose we
shall adopt the model developed in [7], and evaluate the
cumulant generating function (CGF) of charge transfer
via the nonequilibrium Green’s function technique [14].
Moreover, we shall take a mesoscopic view on drag-
counterflow geometries where the top layer is contacted
by leads at different chemical potentials inducing a current
in the bottom layer that is also part of another circuit [5]. In
our case we study a quantum point contact between the two
leads of the bottom layer and explore the possibility of
transforming current on the nanoscale.
The system, schematically depicted in Fig. 1, consists of

an electron-hole bilayer, where each layer is contacted to
two metallic electrodes. While no interlayer tunneling is
assumed to occur, the two layers are coupled via Coulomb
interaction. The Hamiltonian modeling the system reads
H ¼ Hn þHT þHEC. The term Hn accounts for the four
metallic electrodes, characterized by electrochemical
potentials ���, Fermi distribution functions n��, and an
energy-independent density of states �0. Here � ¼ L (R)
refers to the contacts on the left (right) side of the bilayer,
whereas � ¼ T, B labels the top and bottom layer, respec-
tively. HT describes the particle tunneling between the
layers of the EC and the metallic contacts

FIG. 1 (color online). Sketch of the experimental setup. The
double layer EC is contacted with four metallic electrodes.
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HT ¼ X

�¼T;B;�¼L;R

���ð�y
��� þ�y

���Þ; (1)

where �LT;B �RT;B are the tunneling amplitudes, LT=B,

RT=B the electron field operators for the four leads, and

�T;B the field operators for electrons in the EC layers at the

position x ¼ 0, l (for L, R), respectively. As spin is irrele-
vant in the effects we are investigating we consider a
spinless system. Finally HEC describes the EC bilayer.
For the EC all important features we want to describe are
captured by a simple one-dimensional model [7]

HEC ¼
Z l=2

�l=2
dx�yðxÞ HT �

�� HB

 !
�ðxÞ; (2)

where l is the longitudinal distance between the electrodes,
� ¼ ð�T;�BÞT is the two-layer spinor,HT (HB) describes
the electron (hole) single-particle term of the top (bottom)
layer. The interlayer Coulomb interaction is described [10]
by an exciton order parameter �ðxÞ, which is in general a
space-dependent quantity. Its bulk absolute value �0 at
equilibrium represents the excitonic gap and determines
the excitonic correlation length �EC ¼ vF=�0. We use
units such that kB ¼ e ¼ @ ¼ 1 and G0 ¼ 2e2=h.

The FCS is the probability distribution function PðQÞ for
the charges Q ¼ ðQLT;QRT;QLB;QRBÞ to be transferred
through the respective junctions during a (long) waiting
time �, thereby allowing us to compute not only nonlinear
I-V, but also current noise and higher order cumulants. This
information is encoded in the CGF 	ð�Þ ¼ P

Qe
iQ�PðQÞ,

where � ¼ ð
LT; 
RT; 
LB; 
RBÞ are the measuring fields.
The cumulants (irreducible moments) are then found from
the respective derivatives of ln	ð�Þ [15]. In order to
obtain the CGF we adopt the approach of modifying the
Hamiltonian by introducing a time-dependent counting
field and relate 	ð�Þ to the Keldysh Green’s functions of
the system [16]. Such a procedure allows for the calculation

of the FCS for arbitrarily given parameters of (2) and of the
tunneling amplitudes in (1) [17]. The determination of the
currents and its cumulants in this hybrid structure, however,
represents an essentially self-consistent problem, where the
external currents depend on the electrochemical potentials
of the two layers and on the excitonic order parameter,
which in turn adjust to ensure charge conservation and no
interlayer tunneling, thereby affecting the external currents
themselves. In order to proceed, some assumptions are thus
necessary. In view of possible implementations with gra-
phene, we shall consider a linear Dirac cone spectrum H0

for the layers, oppositely shifted by, e.g., two external gates
�Vg, so that HT=B ¼ H0 � eVg ��EC;T=B, where �EC;T=B

are the electrochemical potentials. It is sensible to focus on
the incoherent tunneling regime, �EC, l� � l, where l� is

the dephasing length. The condition �EC � l also implies
that self-consistency effects on the space dependence of
j�ðxÞj are negligible [5,18]. A space-dependent phase
argð�ðxÞÞ� qx, on the other hand, although essential to
ensure that the EC carries counterflowing currents in the
bulk of the bilayer, is not necessary for evaluating the
currents in the leads, which are of interest here [19]. In
contrast, self-consistency of the electrochemical potentials
�EC;T=B of the two layers is crucial to ensure current

conservation in each layer [20]

hILTi ¼ hIRTi; hILBi ¼ hIRBi: (3)

Under these assumptions, we have obtained the complete
analytical expression for the CGF for all parameter regimes.
Such expression, which has been used for our numerical
evaluation, is quite lengthy and we do not report it here.
Nevertheless, all relevant ingredients of the CGF already
appear in the limits of small bias (�L;�, �R;� � �) and
large bias (�L;�, �R;� � �), where the expression of the

CGF greatly simplifies, and acquires the following form on
the left leads

ln	j
R�¼0
¼2�

Z d!

2�

� X

�¼T;B

lnf1þT�ð!Þ½ðei
L��1ÞnL�ð1�f�Þþðe�i
L��1Þf�ð1�nL�Þ�g

�j!�j��

�

�

þ lnf1þTAð!Þ½ðei
LT e�i
LB�1ÞnLTð1�nLBÞþðei
LBe�i
LT �1ÞnLBð1�nLTÞ�g

�
��maxðj!Tj;j!BjÞ

�

��
; (4)

where the transmission coefficients are given by T�ð!Þ ¼
4~�L�=ð1þ ~�L�Þ2 and TAð!Þ ¼ 4~�A=ð1þ ~�AÞ2. The
effective transparencies are parametrized by the EC

density of states as ~�L� ¼ �L�j!�j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

� ��2
p

and

~�A ¼ �LT�LB�
2=½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

T

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

B

q
�, where �L� ¼

�2�0L��0E�
2
L�=2. The functions fT and fB denote Fermi

distributions for the quasiparticles in the separate layers
and !T;B ¼ !��EC;T=B. The first line of Eq. (4) de-

scribes the supragap contribution, which is only due to
single electron transport and is characterized by the normal

transmission coefficient T�. In contrast, the second line
describes the subgap contribution due to the phenomenon
of excitonic Andreev reflection [5], consisting of an elec-
tron and a hole (traveling in different layers), which enter
or leave coherently the bilayer in order for an excitonic pair
to be transferred along the bulk of the system.
The expression for the currents in the left leads is

hIL�i ¼ �i��1@ ln	=@
L�. Expressions for the right-
hand side are obtained by replacing 
LT ! �
RT , 
LB !
�
RB in Eq. (4). Imposing the self-consistency condition
(3) determines �EC�, and one obtains the final results for
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the two currents I� ¼: hIL�i ¼ hIR�i. For simplicity, we
consider the symmetric junction case, �LT ¼ �RT and
�LB ¼ �RB, and symmetrically applied biases �LT ¼
��RT ¼ �VT=2, �LB ¼ ��RB ¼ �VB=2. In this case
Eq. (3) is always fulfilled for �ECT ¼ �ECB ¼ 0. The
average currents are plotted in Fig. 2(a) as a function of
the top layer bias VT , for a fixed value of the bottom layer
bias VB. As one can see, because of the EC coupling, both
IT and IB change, even when varying VT only. In particular,
for jVTj, jVBj< 2�, one observes IT ¼ �IB, a signature
that in the subgap regime transport can only occur via
excitonic counterpropagating currents in the bulk of the
layers, which are transformed into electron and hole cur-
rents in the leads through excitonic Andreev reflections [5].
Notice that for the value VT ¼ VB a current locking occurs
(IT ¼ IB ¼ 0), because the EC cannot sustain currents
driven by equally applied biases (exciton blockade). At
VT ¼ 2� excitonic pairs start to break up and the resulting
electrons or holes get excited above the gap. This is clearly
shown in Fig. 2(b), where the positive conductance exhibits
a resonance peak, whereas the negative transconductance
abruptly changes sign. At higher voltage values the EC
plays a minor role, so that the conductance tends to the
value of the case � ¼ 0, and the transconductance
vanishes, indicating that transport in the bottom layer is
independent of the voltage applied to the top layer.

The current correlators are defined as hhIL�IL�0 ii ¼:
hI��I�0�0 i � hI��ihI�0�0 i, and obtained from Eq. (4) as

hhI��I�0�0 ii ¼ ð�iÞ2��1@2 ln	=@
��@
�0�0 j
��¼0. At equ-

ilibrium (VT ¼ VB ¼ 0) we obtain the customary Johnson-
Nyquist relation for T � �

hhILTILTiijeq ¼ �hhILTIRTiijeq ¼ 4TAð0ÞG0kBT: (5)

This result indicates that the two electrons involved in an
excitonic Andreev reflection dwell in separate layers so that
only the conductance of a single layer enters the Johnson-
Nyquist noise. The second equality in (5) is the generalized
Johnson-Nyquist relationship obtained in [21] for a floating
superconductor, which is here obtained without any use of
Langevin forces.
As we see from Fig. 3 also in nonequilibrium one always

observes a negative cross correlation. This is different from
the case of a superconductor contacted to two normal
electrodes, where one observes a positive cross correlation
of the two currents in the normal leads via crossed Andreev
reflection [22]. The reason for this crucial difference is the
fact that in the EC case one probes the correlations of
electrons and holes rather then correlations of electron
pairs as in the case of superconductors. We call the two
voltage bias situations VT ¼ �VB parallel and antiparallel
configurations. In the first configuration, where the average
current is vanishing, the noise and the cross correlation are
shown in Fig. 3(a). In the subgap regime, up to thermal
fluctuation effects, both the noise and the cross correlation
vanish. This is because the incoming electrons and holes
are always reflected back into the same lead they are
injected from, since no exciton can penetrate inside the

FIG. 2 (color online). (a) current in the top (red) and bottom
(blue) layer as a function of VT , for a fixed value VB ¼ �=2.
�LT ¼ �LB ¼ 0:171 corresponds to transmission of 0.5 for the
uncoupled system, T ¼ 0:01�. For jVT j, jVBj< 2� the bilayer
exhibits counterpropagating currents, exciton blockade occurs at
VB ¼ VT . (b) differential conductance dIT=dVT (red) shows a
resonance peak and tends to the typical value for a quantum
point contact whereas the transconductance dIB=dVT shows a
resonance peak before vanishing at larger bias.

FIG. 3 (color online). (a) The parallel bias configuration
(exciton blockade). Noise and cross correlations are shown as
a function of VT ¼ VB ¼ V, for the three values of transmission
for the uncoupled system of 0.3 (black), 0.5 (blue), 0.7 (red), and
T ¼ 0:01�. (b) The antiparallel bias configuration (counter-
propagating currents). Noise and cross correlations are shown
as a function of VT ¼ �VB ¼ V, again for the three values of
contact transparency.
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EC. Notice that this effect is essentially independent of the
interface transmission, as shown in the three curves of
Fig. 3(a). Indeed for the parallel bias configuration in the
subgap regime the EC gap effectively plays the role of a
large barrier. In contrast, when jVj> 2�, quasiparticles
can be excited above the gap, and the noise in each lead
starts deviating from zero, eventually increasing linearly
with V.

In the antiparallel configuration, where the average
currents in the layers flow in the opposite directions, the
noise and the cross correlation are shown in Fig. 3(b) as a
function of V ¼ VT ¼ �VB. In the supragap regime the
behavior is qualitatively similar to the parallel configura-
tion, so that the noise increases and the cross correlations
saturate to a value determined by the quasiparticle mixed
character above the gap. However, differences with
respect to the parallel configuration emerge in the subgap
regime, where both noise and cross correlation are now
nonvanishing, and depend on the interface transmission.

In realistic implementations of the proposed setup, a
small single-particle interlayer tunneling tab, here assumed
vanishing, is expected to be present. The role of such a
term has been discussed in the literature [23–25], and
depends on the specific implementation. In quantum Hall
bilayers with GaAs wells, the role of such term is to lift the
degeneracy of the EC phase and to introduce a finite
critical current Ic [25], which depends on the layer area
and on jtabj2. In typical drag setups, the total flowing
currents are usually higher than Ic [25]. Interlayer current
is then negligible because the incoherent tunneling resist-
ance is much higher than the in-plane resistance, so that the
results presented here remain valid in the regime of cur-
rents Ic � jIj. We also checked that a long but finite
exciton lifetime leading to a small imaginary part of �
does not alter our results significantly. In the case of
graphene bilayers, the scenario can be richer, depending
on the nature of the insulating barrier and on the rotation of
the graphene layers with respect to each other.

One possible application of the setup could be as a
nanoscale voltage transformer. Ideal voltage transformers,
such as inductors, require that the transformation coeffi-
cient depends weakly on the load characteristics, and that
energy losses are minimal. However, implementation of
on-chip silicon based inductors turns out to be very difficult
[26], so that the seek for trade-off solutions in nanotrans-
formers represents a great challenge in modern electronics.
The contact configuration proposed in [5] suggests that the
setup can be used as a voltage transformer at the nanoscale,
contacting the EC bottom layer to another mesoscopic
system with a known I-V characteristics, such as a quan-
tum point contact (QPC), where IQPC ¼ G0T1VB, with T1

being the contact transparency (see inset of Fig. 4). At low
temperatures and for jVT;Bj< 2�, only excitonic Andreev

reflections contribute to transport and determine hILTi as a
function of VT . On the other hand hILTi ¼ �hILBi, and

current conservation implies that �hILBi ¼ IQPC. This

leads to the transformation

hILTiðVTÞ ¼ G0T1VB: (6)

A typical example for the voltage interrelation is shown in
Fig. 4. In this case the transformation is controlled by T1,
which is typically tunable. Other realizations may involve
transistors based on coupling to internal degrees of free-
dom. Importantly, nanotransformers based on the dissipa-
tionless EC counterflowing currents may help minimizing
heat and noise production.
To conclude, we have calculated the FCS for an EC

contacted to four metallic leads. We have shown how
counterpropagating currents and the generalized Johnson-
Nyquist relation directly follow from the cumulant gener-
ating function. Using this approach we analyzed noise
driven by excitonic Andreev reflections. Although the
effective model is quadratic in fermion fields it correctly
describes the nontrivial multiparticle exciton bound states.
The lowest cumulants of charge transport resemble the free
electron result, nonetheless fully accounting for the highly
nontrivial drag effects as well as energy dependence of the
effective transmission coefficients. We also showed how
excitons can be used for transforming current on the
nanoscale.
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