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Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering

of the cavity modes. Here, we show that quantum state conversion between cavity modes of distinctively

different wavelengths can be realized with high fidelity by adiabatically varying the effective optome-

chanical couplings. The conversion fidelity for Gaussian states is derived by solving the Langevin

equation in the adiabatic limit. Meanwhile, we also show that traveling photon pulses can be transmitted

between different input and output channels with high fidelity and the output pulse can be engineered via

the optomechanical couplings.
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Introduction.—Light-matter interaction in optomechan-
ical systems has been intensively explored [1] and the
strong coupling between the optical or microwave cavities
and the mechanical modes was demonstrated in recent
experiments [2,3]. Electromagnetically induced transpar-
ency (EIT) and normal mode splittings have also been
observed in such systems [4–6]. It was shown that the
mechanical modes can be prepared close to their quantum
ground states in the resolved sideband regime [7–15].

The optomechanical couplings can be explored for
quantum state engineering of both the cavity and the
mechanical modes. In earlier results, it was shown that
sideband cooling can be realized on a mechanical mode by
driving the cavity in the red sideband [7–10]. It was also
proposed that entanglement can be generated in an opto-
mechanical system by driving the cavity in the blue side-
band [16]. The optomechanical systems have recently been
studied as a medium for photon state transmission, storage,
readout, and manipulation [17–26]. In a previous work, we
studied a scheme for quantum state conversion between
cavity modes of distinctly different wavelengths by apply-
ing a sequence of �=2 pulses to swap the cavity and the
mechanical states [21,27]. The fidelity of this scheme is
limited by cavity damping, thermal noise in the mechanical
mode, and accuracy of the pump pulses. In particular, the
fidelity shows a strong linear decrease with increasing
thermal excitation number nth.

Converting quantum states or traveling pulses between
cavity modes with vastly different frequencies, such as an
optical mode and a microwave mode, can have profound
influences on quantum and classical information process-
ing. In this work, we study the optomechanical system as a
medium to transfer cavity states and to transmit photon
pulses between different modes. Our result answers the
outstanding question of how to overcome the effect of
thermal noise on the transfer fidelity [21,27]. We show
that quantum states can be converted between different
cavity modes by adiabatically varying the effective opto-
mechanical couplings. During this process, the quantum

states are preserved in a mechanical dark mode with neg-
ligible excitation to the mechanical mode. The concept of
this scheme is similar to adiabatic state transfer in the EIT
systems. The conversion fidelity for Gaussian states shows
negligible dependence on the thermal noise. Another ad-
vantage of this adiabatic scheme is that it does not require
accurate control of the pump pulses. We also study the
transmission of input pulses to a different output channel
using this system. The condition for optimal transmission
is derived in the frequency domain. High transmission
fidelity can be achieved for input pulses with spectral width
narrower than the relevant transmission half-width. By
applying time-dependent effective couplings, pulse engi-
neering in the output channel can be realized. Our results
indicate that quantum state transfer between vastly differ-
ent input and output modes can be realized with high
fidelity in this system. These results can facilitate the
development of scalable quantum information processors
containing photons, with applications in, e.g., photon pulse
generation and state manipulation, quantum repeaters, and
conversion of information between optical and microwave
photons [28].
Langevin equation in the adiabatic limit.—Our model is

composed of two cavity modes and one mechanical mode
coupling via optomechanical forces, which can be realized
in various experimental systems [29]. For cavity modes
under external pumping, we follow the standard lineariza-
tion procedure to derive the effective Hamiltonian for this
coupled system [9,29,30],

H ¼ X
i¼1;2

� @�ia
y
i ai þ @giðayi bm þ bymaiÞ þ @!mb

y
mbm;

(1)

where ai (a
y
i ) is the annihilation (creation) operator for the

ith cavity mode (i ¼ 1, 2), bm (bym) is for the mechanical
mode, �i is the laser detuning, !m is the mechanical
frequency, and gi is the effective linear coupling that is
proportional to the steady-state cavity amplitude [16,21].
To describe the system-bath coupling, we introduce the
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noise operators aðiÞin ðtÞ for the ith cavity mode and binðtÞ for
the mechanical mode. For simplicity of discussion, we

choose the noise correlations haðiÞin ðtÞaðiÞyin ðt0Þi ¼ �ðt� t0Þ
for the cavity modes and hbinðtÞbyinðt0Þi¼ ðnthþ1Þ�ðt� t0Þ
for the mechanical mode at high temperature with the
thermal excitation number nth [29]. The cavity damping
rates are �i and the mechanical damping rate is �m. In our
scheme, the pump laser is at the first red sideband with
��i ¼ !m and the condition jgij, �i, �m � !m is satis-

fied. Hence, the counterrotating terms ayi b
y
m and aibm in

the coupling, which generate a small heating on the me-
chanical mode as discussed in [22], are neglected from the
above Hamiltonian under the rotating wave approximation.
The Langevin equation in the interaction picture can be
written as [29,31]

id ~vðtÞ=dt ¼ MðtÞ ~vðtÞ þ i
ffiffiffiffi
K

p
~vinðtÞ (2)

with the vector operators ~vðtÞ ¼ ½a1ðtÞ; bmðtÞ; a2ðtÞ�T ,
~vinðtÞ ¼ ½að1Þin ðtÞ; binðtÞ; að2Þin ðtÞ�T , the dynamic matrix

MðtÞ ¼
�i �1

2 g1ðtÞ 0

g1ðtÞ �i �m

2 g2ðtÞ
0 g2ðtÞ �i �2

2

0
BB@

1
CCA; (3)

and the diagonal matrix K ¼ diagð�1; �m; �2Þ.
For time-dependent couplings giðtÞ, Eq. (2) can be

solved under the adiabatic condition jdgi=dtj � g20 with

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21ðtÞ þ g22ðtÞ

q
[29,32]. Let �i be the eigenvalues and

c i be the eigenmodes of MðtÞ. For the transformation
UðtÞ ¼ ½c 1; c 2; c 3�, we have MðtÞUðtÞ ¼ UðtÞ�ðtÞ with
�ðtÞ ¼ diagð�1; �2; �3Þ. In terms of the vector operators

~�ðtÞ ¼ U�1ðtÞ ~vðtÞ and ~�ðtÞ ¼ U�1ðtÞ ffiffiffiffi
K

p
~vinðtÞ, the

Langevin equation can be transformed into

id ~�ðtÞ=dt¼ iðdU�1=dtÞUðtÞ ~�ðtÞþ�ðtÞ ~�ðtÞþ i ~�ðtÞ: (4)

With j½ðdU�1=dtÞUðtÞ�ijj � jdgi=dtj=g0 � g0 [29], the

first term on the right-hand side of Eq. (4) can be neglected
and the time evolution of the system operators can be
derived as

~�ðtÞ ¼ e�i
R

t

0
dt0�ðt0Þ ~�ð0Þ þ

Z t

0
dt0e�i

R
t

t0 dt
00�ðt00Þ ~�ðt0Þ: (5)

Note that the operators used above are the shifted operators
defined with regard to their steady-state amplitudes [21].
When the pump sources are adiabatically varied, the
steady-state amplitudes follow the variation of the pump
sources without affecting these equations.

Adiabatic cavity state conversion.—Under the two-
photon resonance condition �1 ¼ �2 [33] and with
��i ¼ !m, quantum states can be converted between
two cavity modes with high fidelity by adiabatically
varying the couplings giðtÞ. The scheme is illustrated in
Fig. 1(a) for the simple case of zero dampings �i, �m ¼ 0,

where the eigenvalues of the matrix MðtÞ are �1 ¼ 0 and
�2;3 ¼ �g0 with an energy gap g0 separating the modes.

The eigenmode c 1 ¼ ½�g2; 0; g1�T=g0 for �1 is a me-
chanical dark mode that only involves the cavity modes.
The quantum state to be transferred is initially stored in
mode a1. The two other modes are in arbitrary single-
particle states separable from mode a1. At time t ¼ 0, g2
starts at a large negative value and g1 ¼ 0, where the dark
mode c 1 is simply the mode a1 and ½ ~�ð0Þ�1 ¼ a1ð0Þ.
Then, �g2ðtÞ is adiabatically decreased to reach
g2ðTÞ ¼ 0 at the final time T, and g1 is adiabatically
increased to reach a large positive value. The adiabatic
condition requires that T � 1=g0 in this scheme [29]. At
time T, the dark mode c 1 reaches the mode a2 and
½ ~�ðTÞ�1 ¼ a2ðTÞ. During this whole process, the system
is preserved in the mechanical dark mode. Using Eq. (5),
we find that a2ðTÞ ¼ a1ð0Þ, which shows that the initial
state in mode a1 has been transferred to mode a2. In this
scheme, the two-photon resonance condition is crucial for
the existence of the mechanical dark mode which can be
affected by the offset �1 ��2 in the laser detunings [29].
This scheme is similar to adiabatic state transfer in the

EIT systems where atoms in a � system can be converted
from one ground state to the other by adiabatically varying
the Rabi frequencies [33–35]. In our discussion, we let
��i ¼ !m. As we will show below, the mechanical noise
has negligible effect on the state conversion in this
regime. In comparison, in a Raman-like scheme with
j�i þ!mj � gi [36], the state conversion can be realized
via an effective Rabi flip with a Rabi frequency
�g1g2=j�i þ!mj, where the cavity modes are prevented
frommixing with the mechanical mode by the large energy
offset j�i þ!mj [29].
For finite damping rates with �i, �m � g0, we treat the

damping terms as perturbation [29]. The eigenvalue of

FIG. 1 (color online). (a) Mechanical dark mode. (b) F (solid)
and F1 (dashed) for j� ¼ 1i (upper curves) and j� ¼ 1; r ¼ 0:4i
(lower curves). (c) �F for j� ¼ 1i (lower curve) and j� ¼ 1;
r ¼ 0:4i (upper curve). Other parameters are �2 ¼ 0, g1 ¼
5 sinðtÞ, g2 ¼ �5 cosðtÞ, and T ¼ �=2 in arbitrary units.
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the mechanical dark mode becomes �1 ¼ �ið�2g
2
1 þ

�1g
2
2Þ=2g20. The eigenvalues of the other eigenmodes are

only slightly modified by the perturbation, and hence the
adiabatic condition remains unaffected. The mechanical
dark mode becomes

c 1 ¼
�
�g2
g0

;� ið�1 � �2Þg1g2
2g30

;
g1
g0

�
T
; (6)

which includes a small contribution from the mechanical
mode and is not totally ‘‘dark.’’ Using Eq. (5), we derive

a2ðTÞ ¼ e�fð0;TÞa1ð0Þ þ
Z T

0
dt0e�fðt0;TÞ�1ðt0Þ; (7)

where fðt; TÞ ¼ i
R
T
t dt

0�1ðt0Þ and �1ðtÞ is composed of the

noise operators in ~vinðtÞ [29]. With h ~vinðtÞi ¼ 0, we have
ha2ðTÞi ¼ exp½�R

T
0 dt

0ð�2g
2
1 þ �1g

2
2Þ=2g20�ha1ð0Þi, di-

rectly proportional to ha1ð0Þi but with an exponential decay
due to cavity damping.

The fidelity of the state conversion can be defined as

F ¼ ðTr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i

p
�f

ffiffiffiffiffi
�i

pp �Þ2 on the final density matrix �f in

cavity a2 and the initial density matrix �i in cavity a1. For
Gaussian states, the fidelity can be derived analytically
once the covariance matrices of the initial and the final
states are known [37]. Consider the initial state to be the

squeezed state j�; 	i ¼ Dð�Þ expðð	?a21 � 	ðay1 Þ2Þ=2Þj0i
where Dð�Þ is the shift operator with amplitude � and
	 ¼ r expð2i
Þwith squeezing parameter r [31]. At r ¼ 0,
this state is the coherent state j�i. Using Eq. (7), the
covariance matrix of the final state can be derived [29].
The fidelity can be written as F ¼ F1F2 with

F1 � 1� fð0; TÞðcoshð2rÞ � 1Þ � fs coshð2rÞ; (8a)

F2 � 1� f2ð0; TÞyð�; rÞ=2; (8b)

where fð0; TÞ � ð�1 þ �2ÞT=4 linearly depends on the
cavity damping rates and the term fs is due to the me-
chanical noise binðtÞ with [29]

fs & �mð2nth þ 1ÞT½ð�1 � �2Þ=4g0�2: (9)

When �mð2nth þ 1Þ � �i, fs � fð0; TÞ and the factor
½ð�1 � �2Þ=4g0�2 significantly reduces the effect of the
mechanical noise on the fidelity, which may be further
reduced by engineering the damping rates to �1 � �2.
With �i, �m � g0, we expect the fs term can be much
smaller than fð0; TÞ even at room temperature [2–5]. The
function yð�; rÞ is composed of quadratic functions of �
and �? and yð�; 0Þ ¼ 2j�j2 [29]. The fidelity F and F1 are
plotted in Fig. 1(b). The factor F1 decreases linearly with
the cavity damping rates with F1 � 1� fs for coherent
states; the factor F2, in contrast, decreases quadratically
with the cavity damping rates. For illustration, we plot in
Fig. 1(c) the difference �F between the conversion fidel-
ities at �m ¼ 0 and at �m=g0 ¼ 2� 10�4 with nth ¼ 100,
which confirms that the mechanical noise has negligible
effect on the fidelity.

In our previous work on quantum state conversion using
�=2 pulses, the fidelity decreases with the mechanical
noise as ��mTð2nth þ 1Þ coshð2rÞ=4 [21]. In the current
scheme, we exploit the mechanical dark mode which is
immune to the mechanical noise to significantly reduce the
effect of the mechanical noise. In addition, this adiabatic
scheme does not require accurate control of the duration
and magnitude of the pump pulses.
Pulse transmission and engineering.—Traveling photon

pulses can be transmitted between input and output chan-
nels of distinctively different wavelengths. In our discus-
sion, the input pulses have spectral width much narrower
than the mechanical resonance. Consider a quantum input

að1Þin ðtÞ in mode a1, while a
ð2Þ
in ðtÞ and binðtÞ are noise opera-

tors with zero average. The output vector ~voutðtÞ ¼
½að1ÞoutðtÞ; boutðtÞ; að2ÞoutðtÞ�T can be derived using the

Langevin equation and the input-output relation ~voutðtÞ ¼
~vinðtÞ �

ffiffiffiffi
K

p
~vðtÞ [31]. For constant effective couplings, the

output pulse can be solved in the frequency domain

with ~vinð!Þ ¼ Rðdt= ffiffiffiffiffiffiffi
2�

p Þ ~vinðtÞei!t and ~voutð!Þ ¼Rðdt= ffiffiffiffiffiffiffi
2�

p Þ ~voutðtÞei!t. We derive ~voutð!Þ ¼ T̂ð!Þ ~vinð!Þ
with the transmission matrix

T̂ð!Þ ¼ ðI � i
ffiffiffiffi
K

p ðI!�MÞ�1
ffiffiffiffi
K

p Þ (10)

and the identity operator I. The transmission of the input

pulse að1Þin ð!Þ to the output að2Þoutð!Þ is then characterized by
the transmission matrix element T̂31ð!Þ and the output

pulse að2ÞoutðtÞ can be calculated by integrating over the
frequency components [29]. In Fig. 2(a), we plot the

modulus jT̂31ð!Þj for four sets of damping rates �1;2 at

��i ¼ !m. The maximum of jT̂31ð!Þj occurs at ! ¼ 0

FIG. 2 (color online). (a) jbT31ð!Þj, (b) Fp, and (c),

(d) hað2ÞoutðtÞi=hað1Þin ð0Þi for �!=g0 ¼ 0:008, 0.04, respectively,

with ð�1; �2Þ=g0 being (0.096, 0.054) (solid), (0.064, 0.036)
(dash-dotted), (0.032, 0.018) (dotted), and (0.0192, 0.032)
(dashed). Other parameters are �m=g0 ¼ 0:0002, g1 ¼ 4, and
g2 ¼ 3 in arbitrary units.
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which corresponds to the cavity resonances of modes a1
and a2. At the maximum, we have

T̂31ð0Þ¼8g1g2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
=ð4g21�2þ4g22�1þ�m�1�2Þ (11)

which gives the optimal transmission condition g21�2 ¼
g22�1 when �i, �m�gi. Under this condition, T̂31ð0Þ�1.

It can also be shown that T̂32ð!Þ, T̂33ð!Þ ! 0 as ! ! 0,

and hence the noise terms að2Þin ð!Þ and binð!Þ are sup-

pressed in the transmission. The transmission half-width

�! defined by jT̂31ð�!Þj ¼ jT̂31ð0Þj=2 is

�! � ffiffiffi
3

p ðg21�2 þ g22�1 þ �m�1�2=4Þ=2ðg21 þ g22Þ: (12)

These results indicate that a quantum input pulse að1Þin ðtÞ
with a spectral width �! � �! can be transmitted with
high fidelity to the output, while a pulse with �! � �!
can be seriously deformed.

Below we study the photon transmission process by
comparing the shapes of the input and output pulses. The
pulse fidelity can be defined as [29,38]

Fp ¼ jR dthað1Þin ðtÞihað2ÞoutðtÞi?j2R
dtjhað1Þin ðtÞij2

R
dthað2ÞoutðtÞij2

: (13)

With the Cathy-Schwarz inequality, Fp 	 1. The equality

holds only at hað1Þin ðtÞi ¼ chað2ÞoutðtÞi, which is equivalent to

hað1Þin ð!Þi ¼ chað2Þoutð!Þi with c being a constant number.

With hað2Þoutð!Þi ¼ T̂31ð!Þhað1Þin ð!Þi for the frequency com-

ponents, the pulse fidelity is thus determined by the prop-

erties of T̂31ð!Þ. Even though it does not fully quantify the
transmission fidelity of quantum states, high pulse fidelity
clearly indicates the possibility of high fidelity in the trans-
mission of quantum states [29].

As an example, we study the transmission of an input

pulse with the Gaussian time dependence hað1Þin ðtÞi ¼
A expð��2

!t
2=2Þ where �! is the spectral width in the

frequency domain. The normalization factor A does not
affect the pulse fidelity and we set A ¼ 1. The pulse fidelity
decreases rapidly with the input spectral width as is plotted
in Fig. 2(b). For ð�1; �2Þ=g0 ¼ ð0:064; 0:032Þ, �!=g0 ¼
0:04. We have Fp ¼ 0:97 for �!=g0 ¼ 0:008 and Fp ¼
0:77 for�!=g0 ¼ 0:04. For a given�!, the pulse fidelity is
higher for larger transmission half-width. For �! � �!,

T̂31ð!Þ � 1 in the entire spectral range of the input pulse so

that hað2ÞoutðtÞi � hað1Þin ðtÞi, giving high pulse fidelity. For

�! � �!, T̂31ð!Þ decreases rapidly when j!j> �!
and the output pulse is seriously deformed. In Figs. 2(c)

and 2(d), we plot hað2ÞoutðtÞi for �!=g0 ¼ 0:008, 0.04 to
demonstrate the above analysis.

Meanwhile, the output pulse can be engineered by ap-
plying time-dependent effective couplings. Using Eq. (5)
and the relation ~vðtÞ ¼ UðtÞ ~�ðtÞ, the output vector ~voutðtÞ
can be derived as an integral function of the input operator

að1Þin ðt0Þ and the noise operators að2Þin ðt0Þ and binðt0Þ during

time 0 	 t0 	 t. The effective couplings giðtÞmodulate the
dependence of the output operator on the input operator

and can hence manipulate the output pulse að2ÞoutðtÞ. This is
presented in more detail in the Supplemental Material [29].
Conclusions.—We showed that quantum state conver-

sion between modes with vastly different frequencies such
as optical and microwave modes can be realized with high
fidelity by an adiabatic scheme via the mechanical dark
mode. The scheme is immune to the mechanical noise and
does not require accurate control of the pump pulses. We
also illustrated that high-fidelity transmission of quantum
pulses between different input-output channels and pulse
engineering in the output channel can be realized via the
optomechanical couplings. Our work demonstrates that the
optomechanical systems can be explored for photon state
engineering and for various applications in quantum infor-
mation processing.
This work is supported by the DARPA ORCHID pro-

gram through AFOSR, NSF-DMR-0956064, NSF-CCF-
0916303, and NSF-COINS.
Note added.—See the related Letter by Wang and Clerk

in this issue [39].

*LTian@ucmerced.edu
[1] K. C. Schwab and M. L. Roukes, Phys. Today 58, No. 7,

36 (2005); T. J. Kippenberg and K. J. Vahala, Science 321,
1172 (2008).
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