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We revisit the problem of using a mechanical resonator to perform the transfer of a quantum state

between two electromagnetic cavities (e.g., optical and microwave). We show that this system possesses

an effective mechanically dark mode which is immune to mechanical dissipation; utilizing this feature

allows highly efficient transfer of intracavity states, as well as of itinerant photon states. We provide

simple analytic expressions for the fidelity for transferring both Gaussian and non-Gaussian states.
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Introduction.—The field of quantum optomechanics,
where a mechanical resonator is coupled to photons in a
cavity, has seen remarkable recent progress. Milestones
include using the backaction of photons to cool a mechani-
cal resonator to near its ground state [1,2], and the obser-
vation of strong coupling effects [3–5]. The ability of a
mechanical resonator to couple to diverse electromagnetic
cavities naturally leads to what is perhaps the most prom-
ising application of this field: the possibility of efficiently
transferring a quantum state between photons with vastly
differing wavelengths [6–9]. Such state transfer would
have direct utility in quantum information processing
(e.g., the transfer of quantum information from a super-
conducting qubit in a microwave circuit QED setup to an
optical photon, or highly nonclassical microwave states as
prepared in Ref. [10] to optical photons).

Previous investigations of this problem have largely
considered schemes based on two successive ‘‘swap’’
operations in a two-cavity optomechanical system
[Fig. 1(a)]. One pulses the optomechanical interactions to
first exchange the states of the first cavity and the mechani-
cal resonator; this is then repeated to exchange the
mechanical and the second cavity states [6,7,11]. While
intuitively simple, achieving high fidelity with this proto-
col is only possible with low levels of cavity and mechani-
cal dissipation; we quantify this below. In particular, one
requires extremely lowmechanical bath temperatures. This
is true even if the mechanics is initially prepared in its
ground state [6,7], as heating during the transfer nonethe-
less degrades the state. Aspects of this swap scheme were
recently implemented experimentally [12].

Given the above, it would be highly advantageous to find
new state transfer schemes less sensitive to mechanical
dissipation. This is the goal of this Letter. We show that
the two-cavity optomechanical system possesses a mode
which is delocalized between the two cavities while simul-
taneously being decoupled from the mechanical dissipa-
tion; we term this decoupled mode a ‘‘mechanically dark’’
mode, as it is analogous to an atomic state which is
protected against optical excitation by destructive interfer-
ence [13]. We show that by using this dark mode, one can

perform high-fidelity quantum state transfer of intracavity
states at levels of mechanical dissipation where the con-
ventional double-swap scheme is essentially unusable.
We also show that this darkmode can be used for efficient

transfer of itinerant photons (e.g., transferring the state of
photons incident on a microwave cavity to the state of
photons leaving an optical cavity). This approach is parti-
cularly attractive, as it does not require any time-dependent
variation of optomechanical couplings. Further, if one is
willing to only consider the transfer of small-bandwidth
states, the scheme can also be used without requiring opto-
mechanical strong coupling. We quantify analytically the
fidelity of this scheme for Gaussian states (in a way that
allows easy comparison against the intracavity transfer
schemes mentioned above), as well as nonclassical states;
we also consider limitations on the bandwidth of the states
that can be transferred. These analytic expressions yield a
simple intuitive picture of the factors limiting fidelity. In the
limit of weak coupling, this itinerant-photon transfer
scheme is equivalent to that described by Safavi-Naeni
et al. [8] (though that work did not discuss fidelities, strong
coupling, or the role of the dark mode).
Model.—We consider an optomechanical system where

a single mechanical resonator is simultaneously coupled to
both an optical cavity and a microwave cavity via disper-
sive couplings [see Fig. 1(a)]; particular experimental real-
izations are discussed in Refs. [7,8]. We also focus on the
standard situation where a weak bare optomechanical
coupling g � �, !M is enhanced by strongly driving
each cavity, resulting in effective linear couplings (see,
e.g., [14,15]). We work in an interaction picture with
respect to the two cavity drives, and in a displacement
picture with respect to the average (classical) field in
each cavity. The resulting Hamiltonian takes the form

Ĥ ¼ !Mâ
yâ� X

i¼1;2

½�id̂
y
i d̂i �Giðâyd̂i þ d̂yi âÞ� þ Ĥdiss :

(1)

Here, !M (â) is the mechanical frequency (annihilat-

ion operator), d̂i is the annihilation operator of cavity
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i (i ¼ 1, 2) in the displaced frame, and�i is the detuning of
the drive applied to cavity i. The driven optomechanical
coupling between the mechanical resonator and cavity i is
denoted as Gi; note that these are proportional to the drive
amplitude applied to cavity i, and thus can be controlled in
time. Hdiss describes the damping and driving of the two
cavities and mechanical resonator by independent Ohmic
baths. We let � (�i) denote the damping rate of the
mechanical resonator (cavity i), and let NM (Ni) denote
the bath temperature (expressed as a number of thermal
quanta). We also assumed the optimal situation where
each cavity is far into the resolved-sideband regime
!M � �i, and where each cavity is driven near the
red-detuned mechanical sideband (i.e., �i ��!M). This
permits us to make a rotating wave approximation in
writing the optomechanical interactions, resulting in a
‘‘beam-splitter’’ form which is optimal for state transfer
[11]. We assume below negligible phase noise in the cavity
drives. The effect of such noise on coherent transfer was
studied in Refs. [16,17]; the resulting requirements are
similar to those needed for cavity-cooling [17], and are
thus within reach of experiment.

Double-swap protocol.—The optomechanical interac-
tions in Eq. (1) can be used to swap states between the
three modes of the system [6,7,11]. The swap protocol
involves first turning on the interaction G1 for a time ts1 ¼
�=ð2G1Þ (while G2 ¼ 0), which if � ¼ �1 ¼ �2 ¼ 0
would swap the states of cavity 1 and the mechanical

resonator [i.e., âðtsi Þ ¼ �id̂ið0Þ and d̂iðtsi Þ ¼ �iâð0Þ].

One then shuts off G1 and turns on G2 for a time ts2 to
swap the mechanical state to cavity 2.
The presence of mechanical and cavity dissipation de-

grades this protocol’s fidelity. To quantify this, we consider
the simple case of transferring a Gaussian state, and cal-
culate the Uhlmann fidelity F [18] between initial and final
states. Letting �1 (�2) denote the density matrix of cavity 1
(2) at the start (end) of the transfer, we find [19]:

F � ðTr½ð ffiffiffiffiffiffi
�1

p
�2

ffiffiffiffiffiffi
�1

p Þ1=2�Þ2 ¼ 1

1þ �nh
exp

�
� �2

1þ �nh

�
:

(2)

Note that we will optimize the fidelity over simple rota-
tions in phase space (so that if �2 is a rotated version of �1,
F ¼ 1). F depends on just two parameters: �nh represents
the heating of the state during the protocol by noise ema-
nating from cavity and mechanical dissipative baths, while

� characterizes the decay of the mean value of d̂ due to
cavity and mechanical damping. Efficient transfer requires
minimizing both these effects. In the double-swap proto-
col, the amplitude-decay will completely suppressF unless
one is in the strong coupling limit Gi > �i. In this relevant
limit, and for the case where the state to be transferred is a
coherent state j�i, we find the simple result [21]:

�n h¼
X
i

�NMþ�iNi

2
tsi ; �¼j�jX

i

�iþ�

4
tsi ; (3)

where ð�NM þ �NiÞ=2 is the average heating rate and
ð�i þ �Þ=4 is the average amplitude-decay rate during
each time interval. We have assumed the optimal situation
where the mechanical resonator is initially in its ground
state [6,7]. Despite this precooling, the mechanical contri-
bution to �nh can still be large. One thus requires an
extremely low mechanical bath temperature to ensure
good fidelity using swap scheme [see Fig. 1(b)].
Effective mechanically dark mode.—From Eq. (3), we

see that the heating �nh due to mechanical noise in the
double-swap scheme is simply the heating rate times trans-
fer time, and hence scales as 1=G. We now show that
transfer protocols exist where the mechanical-heating
effect is even more greatly suppressed with increasing G.
This is possible by making use of a mode of the two-cavity
optomechanical system which is simultaneously delocal-
ized between both cavities, but at the same time is largely
immune to mechanical dissipation.
Focusing as before on the case where each cavity is

driven at the red-detuned sideband, we note that the coher-

ent part of the Hamiltonian Ĥ0 ¼ Ĥ� Ĥdiss ¼
P

j@!jĉ
y
j ĉj

with j ¼ �, dk. ĉ� � ðĉbr � âÞ= ffiffiffi
2

p
describe hybridized

modes of the bright cavity mode ĉbr � ðG2
1 þ

G2
2ÞÞ�1=2ðG1d̂1 þG2d̂2Þ and the mechanical mode â,

with eigenfrequencies !� ¼ !M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

1 þG2
2

q
. Whereas

ĉ dk � ðG2
1 þG2

2Þ�1=2ð�G2d̂1 þG1d̂2Þ (4)
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FIG. 1 (color online). (a) The two-cavity optomechanical sys-
tem. (b) Fidelity of the double-swap (DS) protocol (green or
light) and the adiabatic transfer (AT) protocol (blue or dark) to
transfer a coherent state j� ¼ 1i, where G=2� ¼ 2 MHz (solid),
G=2� ¼ 0:5 MHz (dashed), and � ¼ 2�� 1 kHz, !M=2� ¼
10 MHz. Cavity 1 (2) is a microwave (optical) cavity:�1=2� ¼
10 GHz (�2=2� ¼ 100 THz), �1 ¼ �2 ¼ 2�� 50 kHz. For
DS, G1 ¼ G2 ¼ G and the total transfer time is ts ¼ �=G. For
AT, we used an optimal modulation with G2

1ðtÞ þG2
2ðtÞ ¼ G2

constant, and an optimal transfer time at each temperature,
which represents a trade-off between heating (via nonadiabatic
transitions) and amplitude decay [27]. The blue dotted line
corresponds to AT of j� ¼ 0:1i with G=2� ¼ 2 MHz; as the
amplitude-decay effect is negligible, a long transfer time can be
used to suppress heating caused by nonadiabatic transitions. For
DS, the fidelity is mainly limited by heating, hence F versus T
for j� ¼ 0:1i is almost indistinguishable from j� ¼ 1i.
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describes a delocalized cavity mode which is decoupled
from the mechanics. We thus refer to ĉdk as a ‘‘mechani-
cally dark’’ mode; its frequency is!dk ¼ !M, independent
of coupling. As we now demonstrate, utilizing this mode
allows the efficient transfer of both intracavity and
itinerant-photon states.

Adiabatic transfer.—Consider first the same problem
addressed by the double-swap scheme, the transfer of an
intracavity state initially in cavity 1 to cavity 2. This can be
accomplished by using an adiabatic passage approach,
similar to the well-known STIRAP scheme [23]. One
modulates G1ðtÞ and G2ðtÞ so that the dark mode adiabati-

cally evolves from being �d̂1 at t ¼ 0 to d̂2 at the end of
the protocol at a time t ¼ tf. The cavity state is thus

transferred from cavity 1 to cavity 2 using the coupling
to the mechanics, but without actually populating the
mechanics; the result is a greatly enhanced protection
against mechanical sources of dissipation.

Figure 1(b) shows how such an adiabatic transfer
protocol improves the state transfer fidelity over the
double-swap scheme when the mechanical-heating effect
is non-negligible. When transferring a Gaussian state, F
again takes the general form described by Eq. (2). The
adiabatic ‘‘dark mode’’ transfer protocol dramatically sup-
presses �nh compared to the swap scheme. However, to
remain adiabatic, the transfer must ideally occur over a
time long compared with 1=G. Thus, similar to the swap
scheme, one needs strong coupling (i.e., �i � Gi) to avoid
the amplitude-decay suppression of F described by � in
Eq. (2). Nonetheless, the greater resilience against mech-
anical noise presents a strong advantage over the double-
swap scheme. A somewhat related scheme for transferring
atomic motional states was discussed in Ref. [11]; the
unidirectional ‘‘cascaded’’ coupling used there is funda-
mentally different from that considered here.

Itinerant state transfer.—While the previously discussed
transfer schemes require a strong optomechanical coupling
(i.e., Gi � �i), mechanically mediated transfer is also
possible in the opposite regime if the goal is to transfer a
narrow-bandwidth state of photons incident on cavity 1 to
the state of photons leaving cavity 2 [8,24]. We now show
that the mechanically dark mode discussed above plays an
important role in this itinerant-photon state transfer, and
even allows it to be highly effective in regimes of both
strong and weak optomechanical coupling. We begin by
writing the Heisenberg-Langevin equations [25,26]:

_̂a ¼ �i!Mâ� ð�=2Þâ� i
X

Gid̂i � ffiffiffiffi
�

p
âin;

_̂di ¼ i�id̂i � ð�i=2Þd̂i � iGiâ� ffiffiffiffiffi
�i

p
d̂i;in ;

(5)

with âin and d̂i;in representing both input noise (taken

to be white) and signals driving each resonator. Solving
Eq. (5) and using standard input-output relations [25]
yield the relation between input and output fields

Âout½!� ¼ s½!�Âin½!� with Â½!� ¼ fd̂1½!�; d̂2½!�; â½!�g
and s½!� is the scattering matrix (see [27] for details).

High-fidelity transfer from d̂1;in to d̂2;out requires that

over the input signal bandwidth, the transmission coeffi-
cient js21½!�j2 � 1, as well as that js23½!�j2 � 0 (i.e.,
negligible transmission of mechanical noise). To quantify
this, we consider a Gaussian input state in a temporal mode

defined by û1 ¼ ð2�Þ�1=2
R
d!f½!�d̂1;in½!� (see, e.g.,

Ref. [26]). f½!� describes a wave packet incident on cavity
1 which is localized in both frequency and time;R
d!jf½!�j2 ¼ 1 to ensure that û1 is a canonical bosonic

annihilation operator. The fidelity of transferring this itin-
erant Gaussian state again takes the general form of Eq. (2),
and the parameters �nh and � can be calculated analytically

[22]. For a coherent state input jc ini / expð�ûy1 Þj0i:

�n h ¼
X

i¼1;2;M

Z
d!jf½!�s2i½!�j2Ni ; (6)

� ¼ j�jmin
�

�
1�

��������
Z

d!e�i!�s21½!�jf½!�j2
��������
�
: (7)

We have optimized the final state �2 in Eq. (2) over a time
translation �, so that if the output pulse is simply a time-
delayed copy of the input pulse, F ¼ 1.
To have protection against mechanical dissipation, one

would ideally like the input state incident on cavity 1 to
only excite the dark mode. Without dissipation, the dark
mode is energetically separated from the coupled modes
ĉ�, and hence protection is achieved by using an input
signal with mean frequency !M in the displaced frame.
Including dissipation (and the consequent lifetime broad-
ening), the input signal incident on cavity 1 will also excite
the bright cavity mode ĉbr as well as the mechanical mode
â. This unwanted excitation is irrelevant as long as the
cooperativity of each cavity Ci ¼ G2

i =��i � 1. In this
limit, the bright mode amplitude hĉbri (average over
jc ini) is a factor �1=C smaller than the dark mode
amplitude, due to a destructive interference akin to the
optomechanical analogue of electromagnetic-induced
transparency [28–30]. The mechanical mode amplitude
may be large in the case of weak coupling, but only results
in a small flux to the mechanical bath (and hence a small

loss) due to the smallness of � (i.e., s31 � 1=
ffiffiffiffi
C

p
). The

transfer of the input signal thus occurs almost entirely via
the dark mode in this limit (see [27] for more details).
Good fidelity also requires that the dark mode, once

excited by the input state, only leaks out via cavity 2,
ensuring js21½!M�j � 1. This requires a destructive inter-
ference between the promptly reflected input signal and the
wave leaving the dark mode via cavity 1. For Ci � 1, this
interference cancellation results in the simple impedance
matching condition C1 ¼ C2 � C, i.e.,

G2
1=�1 ¼ G2

2=�2 : (8)
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Taking our input mode jf½!�j2 to have mean frequency!M

and a Gaussian profile with variance �!2, and assuming
C1 ¼ C2 � 1, we find to leading order in �!:

�n h 	 NM

4C

�
1þ

�
�!

G

�
2
�
1� �2

16G2

��
; (9)

� 	 j�j
�
1

8C
þ

�
2�!

�

�
2
�
1þ

�
�2

8G2

�
2
��

: (10)

Good fidelity requires a high cooperativity C � j�j, NM.
In the weak-coupling regime G< �, one also needsffiffiffiffiffiffiffij�jp

�! � ðG2=�Þ, which reflects the width of the
s21½!� transmission resonance. In the opposite regime

G � �, one needs �! 
 �=
ffiffiffiffiffiffiffij�jp

as shown in Fig. 2(a).
Further, we see that in comparison against the double-swap
scheme, the mechanical-heating effect described by �nh is
reduced by a factor �=G. The expression of �nh is the usual
weak-coupling expression for the mechanical temperature
cavity cooling [14,15]; unlike cavity cooling, it describes
�nh in both weak and strong coupling regimes.
Transfer of nonclassical itinerant states.—Given the

advantages of the itinerant transfer scheme, it is also
interesting to consider how well it is able to transfer non-
classical states. While in general it is difficult to obtain
analytic expressions for the evolution of non-Gaussian
states, we show that here, one can obtain useful and reliable
analytic approximations.

We again consider an input mode in a given temporal
mode û1; we take this mode to be centered on !M, and for
simplicity, to have a vanishingly small bandwidth �!.
Suppose now the input state incident on cavity 1 is a

Fock state of this mode jni / ðûy1 Þnj0i. We also take the

noise driving both cavities to be zero temperature (N1 ¼
N2 ¼ 0), but allow the mechanical resonator to be driven
by thermal noise. Letting pthðq; NMÞ be the probability of
having q thermal quanta incident on the mechanical reso-
nator, the fidelity can be decomposed as

F ¼ X1
r¼0

Pðr; nÞ ¼ X1
r¼0

X1
q¼0

pthðq;NMÞjfðr;nÞq j2; (11)

where Pðr; nÞ is the probability of having r outgoing
photons leaving cavity 1 and n photons leaving cavity 2,

and the expression for fðr;nÞq can be found in the
Supplemental Material [27].
Note that in the regime of optimal state transfer C1 ¼

C2 � C � 1, the probability of having photons leave cav-
ity 1 is small: the dark mode effectively prevents mechani-
cal photons from contributing, and Eq. (8) ensures minimal
reflection of signal photons. One can thus get a good
approximation by simply retaining the r ¼ 0 and r ¼ 1
term in Eq. (11): F is approximately the probability of
obtaining n photons in the cavity 2 output mode and at
most one photon leaving cavity 1. This is a rigorous lower
bound on the exact fidelity, and is exact to order 1=C.
In the limitC � 1, one finds that to leading order in 1=C

the fidelity for transferring the n-photon itinerant Fock
state is F ’ 1� ½NMð3þ 2nÞ þ n�=4C. For NM � 1, the
condition for a near-unity fidelity is thus C � NMn; for a
large-n Fock state, this is more stringent than the condition
for having a large fidelity transfer of a coherent state with
j�j � ffiffiffi

n
p

[cf. Eqs. (9) and (10)].
Finally, we note that the same approach can be used to

compute the fidelity of transferring an arbitrary pure input
state of the form j�1i ¼ P

mcmjmi; the full expression is
provided [27]. The transfer fidelity of different non-
Gaussian states together with a coherent state (for realistic
parameters) is shown in Fig. 2(b).
Conclusions.—In this Letter, we have proposed using a

mechanically dark delocalized mode in a two-cavity opto-
mechanical system for quantum state transfer. We have
demonstrated that both intracavity states and itinerant-
photon states can be transferred with high fidelity, using
parameters within reach of current experiments.
We thank S. Chesi, K. Lehnert, O. Painter, C. Regal, and
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Note added.—See the related Letter by Tian in this

issue [31].
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